
On FreeLunches and Resultants: The
Current Status of Algebraic Attacks

Against AO-Hash Functions

Morten Øygarden

Simula UiB, Bergen

ALPSY, Obergurgl
January 2025

Part I - Some Thoughts on
Solving Multivariate Polynomial

System

2

Multivariate Polynomial System Solving

Consider a set of m polynomials f1, . . . , fm ∈ F[x1, . . . , xn], and
(a1, . . . , am) ∈ Fm. How hard is it to solve the following system of
equations?

f1(x1, . . . , xn) = a1,

...
fm(x1, . . . , xn) = am.

3

Solving Strategies

Easy to solve: linear systems; univariate polynomials; sparse +
small field.

The ideal of generated by the set of polynomials
f1, . . . , fm ∈ R = F[x1, . . . , xn] is

I := ⟨f1, . . . , fm⟩ :=

{
m∑
i=1

figi | gi ∈ R

}
.

Most solving strategies involves searching for polynomials in I that
are easy to solve.

4

Solving Strategies

Easy to solve: linear systems; univariate polynomials; sparse +
small field.

The ideal of generated by the set of polynomials
f1, . . . , fm ∈ R = F[x1, . . . , xn] is

I := ⟨f1, . . . , fm⟩ :=

{
m∑
i=1

figi | gi ∈ R

}
.

Most solving strategies involves searching for polynomials in I that
are easy to solve.

4

Solving Strategies

Easy to solve: linear systems; univariate polynomials; sparse +
small field.

The ideal of generated by the set of polynomials
f1, . . . , fm ∈ R = F[x1, . . . , xn] is

I := ⟨f1, . . . , fm⟩ :=

{
m∑
i=1

figi | gi ∈ R

}
.

Most solving strategies involves searching for polynomials in I that
are easy to solve.

4

Gröbner Basis (GB)

A GB facilitates computations in I and R/I . Is the "go-to" method
for finding solutions to the polynomials generating I .

Fix a total ordering ≺ of the monomials (monomial order). LT(f) is
the largest term in f w.r.t. ≺.

Definition (Gröbner Basis)
A set of polynomials G = {g1, ..., gr} is a GB of I (w.r.t. ≺) if

i) ⟨G⟩ = I ; and
ii) for all f ∈ I , there is some j such that LT(gj)|Lt(f).

5

Gröbner Basis (GB)

A GB facilitates computations in I and R/I . Is the "go-to" method
for finding solutions to the polynomials generating I .

Fix a total ordering ≺ of the monomials (monomial order). LT(f) is
the largest term in f w.r.t. ≺.

Definition (Gröbner Basis)
A set of polynomials G = {g1, ..., gr} is a GB of I (w.r.t. ≺) if

i) ⟨G⟩ = I ; and
ii) for all f ∈ I , there is some j such that LT(gj)|Lt(f).

5

Gröbner Basis (GB)

A GB facilitates computations in I and R/I . Is the "go-to" method
for finding solutions to the polynomials generating I .

Fix a total ordering ≺ of the monomials (monomial order). LT(f) is
the largest term in f w.r.t. ≺.

Definition (Gröbner Basis)
A set of polynomials G = {g1, ..., gr} is a GB of I (w.r.t. ≺) if

i) ⟨G⟩ = I ; and
ii) for all f ∈ I , there is some j such that LT(gj)|Lt(f).

5

Quick Overview
Gröbner Basis Attack in the Setting of This Talk, with m = n.

1 Compute a Gröbner Basis G.

2 Use G to compute1 a univariate polynomial F (X) ∈ I .

3 Find the roots of F (x).

4 Recover solutions for the other variables.

Rule of thumb: Step 1 or 2 typically the bottleneck. Steps 3 and 4
tend to be negligible in comparison.

1We will treat this step as a black box in this talk. (There are, however, lots of interesting things to discuss here!)

6

Part II - Polynomial Modeling
(On Blackboard)

7

Part III - The "FreeLunch"
Method

Based on joint work with A. Bariant, A. Boeuf, A. Lemoine, I.
Manterola Ayala, L. Perrin and H. Raddum. Presented at

Crypto2024.

8

Monomial Order and Weight

All monomial orders can be thought of through weight vectors
(wt(x0), . . . ,wt(xn−1)), where monomials are compared by the
values

xa00 · · ·xan−1

n−1 −→ a0wt(x0) + . . .+ an−1wt(xn−1).

Example: Grading (comparison by degree) has weight vector

wt(x0) = . . . = wt(xn−1) = 1.

9

Monomial Order and Weight

All monomial orders can be thought of through weight vectors
(wt(x0), . . . ,wt(xn−1)), where monomials are compared by the
values

xa00 · · ·xan−1

n−1 −→ a0wt(x0) + . . .+ an−1wt(xn−1).

Example: Grading (comparison by degree) has weight vector

wt(x0) = . . . = wt(xn−1) = 1.

9

An Easy Gröbner Basis Condition

Proposition
A set of polynomials G = {g1, . . . , gℓ} is a Gröbner basis for
I = ⟨G⟩ if

LM<(g1), . . . , LM<(gℓ)

are pairwise coprime.

(E.g. x2 and y are coprime; x2 and xy are not.)

10

Choosing Monomial Orders

Let wt(Pi) = max{wt(m) | m is a monomial in Pi}.

If xdr is a monomial in g and α > 1, then we can choose
wt(zi) = wt(Pi)− δ, for some small δ > 0 s.t.

α · wt(zi) > wt(Pi) > wt(zi).

11

Example: Griffin-π - Model

α = 3, d = 7, two rounds.

z31 − ax+ b = 0,

z32 − cx7 + · · · = 0,

x49 + dx46 + ex45 + · · · = 0

In grevlex (degree-first), the leading monomials are z31 , x7 and x49.
The Proposition does not apply.

In an order with wt(x) = wt(z1) = 1 and wt(z2) = 3, the leading
monomials are z31 , z32 and x49.
=⇒ It’s a Gröbner basis.

This generalizes for more rounds.

12

Example: Griffin-π - Model

α = 3, d = 7, two rounds.

z31 − ax+ b = 0,

z32 − cx7 + · · · = 0,

x49 + dx46 + ex45 + · · · = 0

In grevlex (degree-first), the leading monomials are z31 , x7 and x49.
The Proposition does not apply.

In an order with wt(x) = wt(z1) = 1 and wt(z2) = 3, the leading
monomials are z31 , z32 and x49.
=⇒ It’s a Gröbner basis.

This generalizes for more rounds.

12

Example: Griffin-π - Model

α = 3, d = 7, two rounds.

z31 − ax+ b = 0,

z32 − cx7 + · · · = 0,

x49 + dx46 + ex45 + · · · = 0

In grevlex (degree-first), the leading monomials are z31 , x7 and x49.
The Proposition does not apply.

In an order with wt(x) = wt(z1) = 1 and wt(z2) = 3, the leading
monomials are z31 , z32 and x49.
=⇒ It’s a Gröbner basis.

This generalizes for more rounds.

12

When does this notwork?

We need some assumption on the pure x-term of highest degree in
g.

There is only a single initial input x (and output).

We need at least one of the branches to not be inverted.

13

Part IV - Resultants

Based on the work of H. Yang, Q.-X. Zheng, J. Yang, Q. Liu and D.
Tang, presented at AsiaCrypt2024.

14

Elimination Theory

For an ideal I ⊂ F[x, z1, . . . , zr], we have the i-th elimination ideal

Ii = I ∩ F[x, z1, . . . , zr−i].

The Elimination Theorem
Let G be a Gröbner basis of I w.r.t. the lexicographic order
x < z1 < . . . < zr. Then Gi = G ∩ F[x, z1, . . . , zr−i] is a Gröbner
basis of Ii.

15

Elimination Theory

For an ideal I ⊂ F[x, z1, . . . , zr], we have the i-th elimination ideal

Ii = I ∩ F[x, z1, . . . , zr−i].

The Elimination Theorem
Let G be a Gröbner basis of I w.r.t. the lexicographic order
x < z1 < . . . < zr. Then Gi = G ∩ F[x, z1, . . . , zr−i] is a Gröbner
basis of Ii.

15

Elimination with Resultants
(Of two Polynomials)

Consider f, p ∈ R[x] for some commutative ring R, where

f =

γ∑
i=0

aix
i, ai ∈ R, g =

δ∑
i=0

bix
i, bi ∈ R.

The Sylvester matrix of f and g in R(γ+δ)×(γ+δ) is defined as:

Sylx(f, g) =

aγ · · · a1 a0 0
.

0 aγ · · · a1 a0
bδ bδ−1 · · · b0 0

.
0 bδ bδ−1 · · · b0︸ ︷︷ ︸

γ+δ

 δ

 γ

.

16

Elimination with Resultants
(Of two Polynomials)

Consider f, p ∈ R[x] for some commutative ring R, where

f =

γ∑
i=0

aix
i, ai ∈ R, g =

δ∑
i=0

bix
i, bi ∈ R.

The Sylvester matrix of f and g in R(γ+δ)×(γ+δ) is defined as:

Sylx(f, g) =

aγ · · · a1 a0 0
.

0 aγ · · · a1 a0
bδ bδ−1 · · · b0 0

.
0 bδ bδ−1 · · · b0︸ ︷︷ ︸

γ+δ

 δ

 γ

.

16

Elimination with Resultants
(Of two Polynomials)

The resultant of f and g with respect to x is defined as:

Resx(f, g) = |Sylx(f, g)| ∈ R.

Resx(f, g) is a polynomial in the coefficients of f and g that does
not depend on x.

17

A Succession of (two-polynomial) Resultants

Yang et. al., observes that for "our" polynomial systems, we can
compute generators for

I1 ⊇ I2 ⊇ . . . ⊇ Ir = I ∩ F[x],

by successively computing the resultants of two polynomials.

Write fi = zαi − pi. Then

I1 = ⟨f1, f2, . . . , fr−1,Reszr(g, fr)⟩,

I2 = ⟨f1, f2, . . . , fr−2,Reszr−1 (Reszr(g, fr), fr−1)⟩,

and so on.

18

A Succession of (two-polynomial) Resultants

Yang et. al., observes that for "our" polynomial systems, we can
compute generators for

I1 ⊇ I2 ⊇ . . . ⊇ Ir = I ∩ F[x],

by successively computing the resultants of two polynomials.
Write fi = zαi − pi. Then

I1 = ⟨f1, f2, . . . , fr−1,Reszr(g, fr)⟩,

I2 = ⟨f1, f2, . . . , fr−2,Reszr−1 (Reszr(g, fr), fr−1)⟩,

and so on.

18

A Succession of (two-polynomial) Resultants

Yang et. al., observes that for "our" polynomial systems, we can
compute generators for

I1 ⊇ I2 ⊇ . . . ⊇ Ir = I ∩ F[x],

by successively computing the resultants of two polynomials.
Write fi = zαi − pi. Then

I1 = ⟨f1, f2, . . . , fr−1,Reszr(g, fr)⟩,

I2 = ⟨f1, f2, . . . , fr−2,Reszr−1 (Reszr(g, fr), fr−1)⟩,

and so on.

18

When Does This Not Work?

We need to have a single output constraint and input x. Otherwise
all variables will show up in at least three polynomials.

Large α ⇒ large Sylvester matrix. I’m currently not aware of good
algorithms for computing determinants over multivariate
polynomial rings.

19

Part V - Open Problems

20

Open Problems 1

Can we do better than generic commutative algebra
algorithms when taking extra structure from the
cryptographic problem into account?

E.g.,
• Constructing multiplication matrices w.r.t. a GB G.
• Computing determinants over multivariate polynomial rings.
• General resultants involving more than two polynomials.

21

Open Problems 1

Can we do better than generic commutative algebra
algorithms when taking extra structure from the
cryptographic problem into account?

E.g.,
• Constructing multiplication matrices w.r.t. a GB G.
• Computing determinants over multivariate polynomial rings.
• General resultants involving more than two polynomials.

21

Open Problems 2

Everything in this talk requires a single output constraint.
How will the techniques generalize for ≥ 2 outputs?

22

	Title Page

