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Blockchains, and ZK-SNARKs



Verifiable Computation and ZK-SNARKs

Verifiable Computation for Trusted Cloud/P2P:

• Server: computes some function F (pub, sec).
• Client: verifies the correctness of the output.
• ZK-SNARKs:

� Server ⇐⇒ Prover, Client ⇐⇒ Verifier

• Virtual Machines, Blockchains, Recursive SNARKs…
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Hash functions and ZK-SNARKs

Hash functions play a central role in SNARKs:

• Blockchain rollups use Merkle Trees (MT)…
• …And so do recursive SNARKs.
• …And the FRI-based PCS used in STARK as well.
• Fiat-Shamir transform for non-interactive arguments.
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Figure 1: Left: binary Merkle Tree. Right: Fractal [12] verifier.
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Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

• Verification is fast (often constant time).
• Generation depends on Multiplicative Complexity:

� Circuit over a large prime field Fp (log(p) ∈ {64, 128, 256}).
• Bit-oriented hash functions ⇒ high MC.

� Bitwise operations are expensive to emulate.
• Arithmetization-oriented hash functions ⇒ low MC.

� defined directly over Fp .

• Native (SW/HW) performance is still important!
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Flexible AO Compression Modes
Joint work E. Andreeva, R. Bhattacharyya, A. Roy



Compositional Paradigms

Hash functions from provably secure compositional paradigms:

• Permutation-based Sponge mode [6]:
��� Provably secure over F2 and Fp [7, 22]).
�� Cannot use the key input to compress data.

• Blockcipher-based PGV modes [25]:
�� Provably secure over F2 [9].
��� Exploits both key and plaintext inputs for compression.
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Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.
�� Require a padding scheme, suboptimal compression rate.
�� Wider attack surface (e.g. length extension attacks).

• Compression functions, inputs from Fm
p :

��� High compression rate.
�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?
����� Exploit flexibility of AO design strategies!
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The PGV-ELC modes

We introduced the PGV-ELC family of modes:

• Published at IEEE CSF 2024 [2].
• Based on a block cipher E : Fκ

p × Fn
p → Fn

p .
• CK ,P ,F ,R ,E maps x0 ‖ x1 ∈ Fκ′+n′

p to h ∈ F`
p , with ` ≤ n′.

• Expansion matrices K ∈ Fκ×κ′
p and P ∈ Fn×n′

p .
• Compression matrices F ∈ F`×n′

p and R ∈ F`×n
p .
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The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

• Based on a permutation π : Fm
p → Fm

p .
• CL,F ,R ,π maps x ∈ Fm′

p to h ∈ F`
p , with ` ≤ m′.

• Expansion matrix L ∈ Fm×m′
p .

• Compression matrices F ∈ F`×m′
p and R ∈ F`×m

p .
• Includes existing modes like Jive [11] or Trunc [17, 19].
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Security Results



How to Prove Your Security

In order to formally prove that our modes are secure, we need:

• A model for the underlying primitive(s) P:
� Ideal cipher/permutation E $← Block

(
Fκ

p ,Fn
p
)
, π $← Perm

(
Fm

p
)
.

• An adversary:
� Query-bounded algorithm A with oracle access to P.

• A security notion:
� Collision/preimage resistance, indifferentiability, …

Formalized by an advantage function:

• Advnotion
mode (q) = maxA{Advnotion

mode (A, q)}.
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Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AP() : x 6= x ′ ∧ CP(x) = CP

(
x ′)]

For PGV-ELC: CE (x, y) = R · EKy(Px) + Fx:

1. Consider R ,F right-invertible, K ,P left-invertible.
2. Matrices induce partitions over the row/column span.
3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.
5. Still, we obtain Advcol

C (q) ≤ q2+q
p`−q (≈ birthday attack).

�� Similar reasoning for ELC-P modes, preimage resistance.
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How to choose your matrix?

Consider ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

• How to choose the matrix R?
� Any pseudo-invertible matrix will do.
� What if we weaken our model?

• A has access to an oracle Ot , with ` < t ≤ m:
� Tr

(
π
(
Ot

(
v ∈ Ft

p
)))

= v
• If R is pseudo-identity (i.e. truncation), easy to get collisions!

� Choose R MDS.

• Related: AES last round missing MixColumns [13].
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Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

• Indifferentiability ≈ compositional indistinguishability.
• (FIL) Random Oracle H $← Func

(
Fm

p ,F`
p
)
.

• Simulator S must mimic the primitive P.
� Can query H, should be (query) efficient.

• Differentiator D must tell (C,P) apart from (H,S).

C P H S

D

11
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Indifferentiability of PGV-ELC and ELC-P

For ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

1. Again, R ,F right-invertible, L left-invertible.
2. We can devise S such that:

� Keeps track of queries coming from D.
� Makes (at most) one H-query per call.

3. D can differentiate S from π via backward queries:
� pm − pm′ of them are preimage-free (L(L+y) 6= y).

4. We can bound Advdif
C (q) ≤ q

pm−m′−q
� q is the sum of primitive and construction queries.

� For PGV-ELC: Advdif
C (q) ≤ q

pn−n′−q .
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Modes security comparison

Mode Primitive col pre dif

ELC-P Perm(m) q2/p` q/p` q/pm−m′

PGV-ELC Block(κ, n) q2/p` q/p` q/pn−n′

Sponge1 Perm(m) q2/pmin{`,m−m′} q/pmin{`,m−m′} q2/pm−m′

Assuming m′ = n′ + κ′ and m = n + κ:

• ELC-P and PGV-LC have optimal col and pre resistance.
• col and pre resistance of Sponge are sub-optimal.
• ELC-P indifferentiability is better than PGV-ELC.

1DIF advantage drops to q/pm′−m for single-iteration.
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Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]
• Arbitrarily sized block ciphers/permutations.
• Secure parametrizations established via cryptanalysis.
• Large instances more efficient than black-box combinations.
� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.
• Fiat-Shamir with known (reasonably short) message length.
� Area cost, especially for HW implementations.
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Experiments



Target Design Strategies

Hades (Poseidon):
• ‘Partial’ SPN structure.

• High number of rounds.
• Lightweight key schedule.

MARVELlous (Rescue):
• ‘Double’ SPN structure.
• Low number of rounds.
• Heavyweight key schedule.
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Concrete Instantiances

How did we parametrize Hades and Rescue:

• Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).
• Sbox: α = min{a | gcd(a, p − 1) = 1}.
• Affine layers use Hilbert’s MDS matrix: mi,j =

1
i+j−1 .

� Also used for Poseidon’s key scheduler.

• Round numbers computed according to [18, 27].
• All compression/expansion matrices set to pseudo-identity.

� Match the Trunc mode used in e.g. Griffin [16].

• Security target: 128 bits of collision resistance.
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Plain performance

Native execution performance:

• C++ software implementation2.
• Light scheduler or long state ⇒ PGV-ELC.
• Heavy scheduler and short state ⇒ ELC-P.
� PGV-ELC provides more parallelization opportunities.

log2(p) ≈ 256 log2(p) ≈ 64

Rate LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 7.52 µs 12.3 µs 13.2 µs 4.12 µs 2.57 µs 8.49 µs
4:1 19.3 µs 12.1 µs 28.2 µs 14.8 µs 7.02 µs 35.0 µs
8:1 69.7 µs 36.8 µs 84.4 µs 164 µs 27.5 µs 223.6 µs

Re
sc

ue

2:1 183 µs 385 µs 208 µs 22.1 µs 24.2 µs 33.3 µs
4:1 217 µs 401 µs 220 µs 47.1 µs 43.9 µs 58.9 µs
8:1 320 µs 458 µs 354 µs 136 µs 92.4 µs 143 µs

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -O3 -march=native
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Groth16 benchmarks

We considered the Groth16 ZK-SNARK [21]:

• Requires a pairing-friendly elliptic curve like BLS12-381.
• Preimage-verification circuit3:

� R1CS arithmetization: Ax � Bx = Cx.
� Complexity depends mainly on the # of multiplications.

# R1CS constraints Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 221 221 246 72.9ms 73.0ms 75.8ms
4:1 268 218 293 83.0ms 73.4ms 89.4ms
8:1 368 268 393 105ms 83.9ms 115ms

Re
sc

ue

2:1 240 432 252 67.2ms 107ms 67.7ms
4:1 264 480 270 71.1ms 116ms 73.4ms
8:1 384 528 432 102ms 126ms 110ms

3Same setup, + libsnark.
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Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

• Uses FRI [5] over the Goldilocks field (high 2-adicity).
• Employs Plonkish arithmetization:

� Based on PlonK [14] + custom gates.
� Applies optimizations to the circuit description.

# gates Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 122 70 259 11.3ms 11.1ms 16.5ms
4:1 439 226 668 26.0ms 16.2ms 27.1ms
8:1 2065 847 2864 90.8ms 47.5ms 92.9ms

Re
sc

ue

2:1 91 75 175 10.9ms 8.58ms 17.2ms
4:1 284 182 418 16.8ms 11.5ms 27.1ms
8:1 976 568 1213 47.9ms 26.5ms 49.0ms

19
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Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

• We devised an optimized R1CS for MT openings [2]:
� Slight change in the opening structure (copath + full path).
� up to 15% improvement for reasonable arities.
� Scales with tree arity and compactness of the CF.
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Roll credits

T he End
Thank you for your attention!

Any questions?
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