
Flexible Modes for Arithmetization-Oriented
Compression Functions
ALPSY 2025, January 25–29, Obergurgl

Stefano Trevisani

TU Wien Security & Privacy Group

Verifiable Computation,
Blockchains, and ZK-SNARKs

Verifiable Computation and ZK-SNARKs

Verifiable Computation for Trusted Cloud/P2P:

• Server: computes some function F (pub, sec).
• Client: verifies the correctness of the output.
• ZK-SNARKs:

� Server ⇐⇒ Prover, Client ⇐⇒ Verifier

• Virtual Machines, Blockchains, Recursive SNARKs…

1

Verifiable Computation and ZK-SNARKs

Verifiable Computation for Trusted Cloud/P2P:

• Server: computes some function F (pub, sec).

• Client: verifies the correctness of the output.
• ZK-SNARKs:

� Server ⇐⇒ Prover, Client ⇐⇒ Verifier

• Virtual Machines, Blockchains, Recursive SNARKs…

1

Verifiable Computation and ZK-SNARKs

Verifiable Computation for Trusted Cloud/P2P:

• Server: computes some function F (pub, sec).
• Client: verifies the correctness of the output.

• ZK-SNARKs:
� Server ⇐⇒ Prover, Client ⇐⇒ Verifier

• Virtual Machines, Blockchains, Recursive SNARKs…

1

Verifiable Computation and ZK-SNARKs

Verifiable Computation for Trusted Cloud/P2P:

• Server: computes some function F (pub, sec).
• Client: verifies the correctness of the output.
• ZK-SNARKs:

� Server ⇐⇒ Prover, Client ⇐⇒ Verifier

• Virtual Machines, Blockchains, Recursive SNARKs…

1

Verifiable Computation and ZK-SNARKs

Verifiable Computation for Trusted Cloud/P2P:

• Server: computes some function F (pub, sec).
• Client: verifies the correctness of the output.
• ZK-SNARKs:

� Server ⇐⇒ Prover, Client ⇐⇒ Verifier

• Virtual Machines, Blockchains, Recursive SNARKs…

1

Hash functions and ZK-SNARKs

Hash functions play a central role in SNARKs:

• Blockchain rollups use Merkle Trees (MT)…
• …And so do recursive SNARKs.
• …And the FRI-based PCS used in STARK as well.
• Fiat-Shamir transform for non-interactive arguments.

m1 m2 m3 m4 m5 m6 m7 m8

H H H H

ν3 ν4 ν5 ν6

H H

ν1 ν2

H

ν0

Figure 1: Left: binary Merkle Tree. Right: Fractal [12] verifier.

2

Hash functions and ZK-SNARKs

Hash functions play a central role in SNARKs:

• Blockchain rollups use Merkle Trees (MT)…

• …And so do recursive SNARKs.
• …And the FRI-based PCS used in STARK as well.
• Fiat-Shamir transform for non-interactive arguments.

m1 m2 m3 m4 m5 m6 m7 m8

H H H H

ν3 ν4 ν5 ν6

H H

ν1 ν2

H

ν0

Figure 1: Left: binary Merkle Tree. Right: Fractal [12] verifier.

2

Hash functions and ZK-SNARKs

Hash functions play a central role in SNARKs:

• Blockchain rollups use Merkle Trees (MT)…
• …And so do recursive SNARKs.

• …And the FRI-based PCS used in STARK as well.
• Fiat-Shamir transform for non-interactive arguments.

m1 m2 m3 m4 m5 m6 m7 m8

H H H H

ν3 ν4 ν5 ν6

H H

ν1 ν2

H

ν0

Figure 1: Left: binary Merkle Tree. Right: Fractal [12] verifier.

2

Hash functions and ZK-SNARKs

Hash functions play a central role in SNARKs:

• Blockchain rollups use Merkle Trees (MT)…
• …And so do recursive SNARKs.
• …And the FRI-based PCS used in STARK as well.

• Fiat-Shamir transform for non-interactive arguments.

m1 m2 m3 m4 m5 m6 m7 m8

H H H H

ν3 ν4 ν5 ν6

H H

ν1 ν2

H

ν0

Figure 1: Left: binary Merkle Tree. Right: Fractal [12] verifier.

2

Hash functions and ZK-SNARKs

Hash functions play a central role in SNARKs:

• Blockchain rollups use Merkle Trees (MT)…
• …And so do recursive SNARKs.
• …And the FRI-based PCS used in STARK as well.
• Fiat-Shamir transform for non-interactive arguments.

m1 m2 m3 m4 m5 m6 m7 m8

H H H H

ν3 ν4 ν5 ν6

H H

ν1 ν2

H

ν0

Figure 1: Left: binary Merkle Tree. Right: Fractal [12] verifier.

2

Hash functions and ZK-SNARKs

Hash functions play a central role in SNARKs:

• Blockchain rollups use Merkle Trees (MT)…
• …And so do recursive SNARKs.
• …And the FRI-based PCS used in STARK as well.
• Fiat-Shamir transform for non-interactive arguments.

m1 m2 m3 m4 m5 m6 m7 m8

H H H H

ν3 ν4 ν5 ν6

H H

ν1 ν2

H

ν0

Figure 1: Left: binary Merkle Tree. Right: Fractal [12] verifier.
2

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

• Verification is fast (often constant time).
• Generation depends on Multiplicative Complexity:

� Circuit over a large prime field Fp (log(p) ∈ {64, 128, 256}).
• Bit-oriented hash functions ⇒ high MC.

� Bitwise operations are expensive to emulate.
• Arithmetization-oriented hash functions ⇒ low MC.

� defined directly over Fp .

• Native (SW/HW) performance is still important!

3

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

• Verification is fast (often constant time).
• Generation depends on Multiplicative Complexity:

� Circuit over a large prime field Fp (log(p) ∈ {64, 128, 256}).
• Bit-oriented hash functions ⇒ high MC.

� Bitwise operations are expensive to emulate.
• Arithmetization-oriented hash functions ⇒ low MC.

� defined directly over Fp .

• Native (SW/HW) performance is still important!

3

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

• Verification is fast (often constant time).

• Generation depends on Multiplicative Complexity:
� Circuit over a large prime field Fp (log(p) ∈ {64, 128, 256}).

• Bit-oriented hash functions ⇒ high MC.
� Bitwise operations are expensive to emulate.

• Arithmetization-oriented hash functions ⇒ low MC.
� defined directly over Fp .

• Native (SW/HW) performance is still important!

3

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

• Verification is fast (often constant time).
• Generation depends on Multiplicative Complexity:

� Circuit over a large prime field Fp (log(p) ∈ {64, 128, 256}).

• Bit-oriented hash functions ⇒ high MC.
� Bitwise operations are expensive to emulate.

• Arithmetization-oriented hash functions ⇒ low MC.
� defined directly over Fp .

• Native (SW/HW) performance is still important!

3

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

• Verification is fast (often constant time).
• Generation depends on Multiplicative Complexity:

� Circuit over a large prime field Fp (log(p) ∈ {64, 128, 256}).
• Bit-oriented hash functions ⇒ high MC.

� Bitwise operations are expensive to emulate.

• Arithmetization-oriented hash functions ⇒ low MC.
� defined directly over Fp .

• Native (SW/HW) performance is still important!

3

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

• Verification is fast (often constant time).
• Generation depends on Multiplicative Complexity:

� Circuit over a large prime field Fp (log(p) ∈ {64, 128, 256}).
• Bit-oriented hash functions ⇒ high MC.

� Bitwise operations are expensive to emulate.
• Arithmetization-oriented hash functions ⇒ low MC.

� defined directly over Fp .

• Native (SW/HW) performance is still important!

3

Arithmetization-Oriented Hash Functions

Cost of hashing in ZK-SNARK:

• Verification is fast (often constant time).
• Generation depends on Multiplicative Complexity:

� Circuit over a large prime field Fp (log(p) ∈ {64, 128, 256}).
• Bit-oriented hash functions ⇒ high MC.

� Bitwise operations are expensive to emulate.
• Arithmetization-oriented hash functions ⇒ low MC.

� defined directly over Fp .

• Native (SW/HW) performance is still important!

3

Flexible AO Compression Modes
Joint work E. Andreeva, R. Bhattacharyya, A. Roy

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

• Permutation-based Sponge mode [6]:
��� Provably secure over F2 and Fp [7, 22]).
�� Cannot use the key input to compress data.

• Blockcipher-based PGV modes [25]:
�� Provably secure over F2 [9].
��� Exploits both key and plaintext inputs for compression.

0

m0

c elements

r elements

π

m1

π

…

h

h0

E

m0

m1 � h

Sponge Davies-Meyer

4

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

• Permutation-based Sponge mode [6]:

��� Provably secure over F2 and Fp [7, 22]).
�� Cannot use the key input to compress data.

• Blockcipher-based PGV modes [25]:
�� Provably secure over F2 [9].
��� Exploits both key and plaintext inputs for compression.

0

m0

c elements

r elements

π

m1

π

…

h

h0

E

m0

m1 � h

Sponge Davies-Meyer

4

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

• Permutation-based Sponge mode [6]:
��� Provably secure over F2 and Fp [7, 22]).

�� Cannot use the key input to compress data.
• Blockcipher-based PGV modes [25]:

�� Provably secure over F2 [9].
��� Exploits both key and plaintext inputs for compression.

0

m0

c elements

r elements

π

m1

π

…

h

h0

E

m0

m1 � h

Sponge Davies-Meyer

4

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

• Permutation-based Sponge mode [6]:
��� Provably secure over F2 and Fp [7, 22]).
�� Cannot use the key input to compress data.

• Blockcipher-based PGV modes [25]:
�� Provably secure over F2 [9].
��� Exploits both key and plaintext inputs for compression.

0

m0

c elements

r elements

π

m1

π

…

h

h0

E

m0

m1 � h

Sponge Davies-Meyer

4

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

• Permutation-based Sponge mode [6]:
��� Provably secure over F2 and Fp [7, 22]).
�� Cannot use the key input to compress data.

• Blockcipher-based PGV modes [25]:

�� Provably secure over F2 [9].
��� Exploits both key and plaintext inputs for compression.

0

m0

c elements

r elements

π

m1

π

…

h

h0

E

m0

m1 � h

Sponge Davies-Meyer

4

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

• Permutation-based Sponge mode [6]:
��� Provably secure over F2 and Fp [7, 22]).
�� Cannot use the key input to compress data.

• Blockcipher-based PGV modes [25]:
�� Provably secure over F2 [9].

��� Exploits both key and plaintext inputs for compression.

0

m0

c elements

r elements

π

m1

π

…

h

h0

E

m0

m1 � h

Sponge Davies-Meyer

4

Compositional Paradigms

Hash functions from provably secure compositional paradigms:

• Permutation-based Sponge mode [6]:
��� Provably secure over F2 and Fp [7, 22]).
�� Cannot use the key input to compress data.

• Blockcipher-based PGV modes [25]:
�� Provably secure over F2 [9].
��� Exploits both key and plaintext inputs for compression.

0

m0

c elements

r elements

π

m1

π

…

h

h0

E

m0

m1 � h

Sponge Davies-Meyer

4

Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.
�� Require a padding scheme, suboptimal compression rate.
�� Wider attack surface (e.g. length extension attacks).

• Compression functions, inputs from Fm
p :

��� High compression rate.
�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?
����� Exploit flexibility of AO design strategies!

5

Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.
�� Require a padding scheme, suboptimal compression rate.
�� Wider attack surface (e.g. length extension attacks).

• Compression functions, inputs from Fm
p :

��� High compression rate.
�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?
����� Exploit flexibility of AO design strategies!

5

Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.

�� Require a padding scheme, suboptimal compression rate.
�� Wider attack surface (e.g. length extension attacks).

• Compression functions, inputs from Fm
p :

��� High compression rate.
�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?
����� Exploit flexibility of AO design strategies!

5

Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.
�� Require a padding scheme, suboptimal compression rate.

�� Wider attack surface (e.g. length extension attacks).
• Compression functions, inputs from Fm

p :
��� High compression rate.
�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?
����� Exploit flexibility of AO design strategies!

5

Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.
�� Require a padding scheme, suboptimal compression rate.
�� Wider attack surface (e.g. length extension attacks).

• Compression functions, inputs from Fm
p :

��� High compression rate.
�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?
����� Exploit flexibility of AO design strategies!

5

Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.
�� Require a padding scheme, suboptimal compression rate.
�� Wider attack surface (e.g. length extension attacks).

• Compression functions, inputs from Fm
p :

��� High compression rate.
�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?
����� Exploit flexibility of AO design strategies!

5

Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.
�� Require a padding scheme, suboptimal compression rate.
�� Wider attack surface (e.g. length extension attacks).

• Compression functions, inputs from Fm
p :

��� High compression rate.

�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?
����� Exploit flexibility of AO design strategies!

5

Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.
�� Require a padding scheme, suboptimal compression rate.
�� Wider attack surface (e.g. length extension attacks).

• Compression functions, inputs from Fm
p :

��� High compression rate.
�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?
����� Exploit flexibility of AO design strategies!

5

Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.
�� Require a padding scheme, suboptimal compression rate.
�� Wider attack surface (e.g. length extension attacks).

• Compression functions, inputs from Fm
p :

��� High compression rate.
�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?

����� Exploit flexibility of AO design strategies!

5

Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.
�� Require a padding scheme, suboptimal compression rate.
�� Wider attack surface (e.g. length extension attacks).

• Compression functions, inputs from Fm
p :

��� High compression rate.
�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?
����� Exploit flexibility of AO design strategies!

5

Dealing with Input Length

Two kinds of hash modes:

• (Variable Input Length) Hash functions, inputs from F∗
p :

��� Flexible input size.
�� Require a padding scheme, suboptimal compression rate.
�� Wider attack surface (e.g. length extension attacks).

• Compression functions, inputs from Fm
p :

��� High compression rate.
�� ‘Rigid’ input size, usually rely on a small primitive.

� Can we have the best of both?
����� Exploit flexibility of AO design strategies!

5

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

• Published at IEEE CSF 2024 [2].
• Based on a block cipher E : Fκ

p × Fn
p → Fn

p .
• CK ,P ,F ,R ,E maps x0 ‖ x1 ∈ Fκ′+n′

p to h ∈ F`
p , with ` ≤ n′.

• Expansion matrices K ∈ Fκ×κ′
p and P ∈ Fn×n′

p .
• Compression matrices F ∈ F`×n′

p and R ∈ F`×n
p .

EP

K

x1
F

...

...

R

..
.

h

...

...

...

. . .

. . .

x0

6

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

• Published at IEEE CSF 2024 [2].

• Based on a block cipher E : Fκ
p × Fn

p → Fn
p .

• CK ,P ,F ,R ,E maps x0 ‖ x1 ∈ Fκ′+n′
p to h ∈ F`

p , with ` ≤ n′.
• Expansion matrices K ∈ Fκ×κ′

p and P ∈ Fn×n′
p .

• Compression matrices F ∈ F`×n′
p and R ∈ F`×n

p .

EP

K

x1
F

...

...

R

..
.

h

...

...

...

. . .

. . .

x0

6

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

• Published at IEEE CSF 2024 [2].
• Based on a block cipher E : Fκ

p × Fn
p → Fn

p .

• CK ,P ,F ,R ,E maps x0 ‖ x1 ∈ Fκ′+n′
p to h ∈ F`

p , with ` ≤ n′.
• Expansion matrices K ∈ Fκ×κ′

p and P ∈ Fn×n′
p .

• Compression matrices F ∈ F`×n′
p and R ∈ F`×n

p .

EP

K

x1
F

...

...

R

..
.

h

...

...

...

. . .

. . .

x0

6

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

• Published at IEEE CSF 2024 [2].
• Based on a block cipher E : Fκ

p × Fn
p → Fn

p .
• CK ,P ,F ,R ,E maps x0 ‖ x1 ∈ Fκ′+n′

p to h ∈ F`
p , with ` ≤ n′.

• Expansion matrices K ∈ Fκ×κ′
p and P ∈ Fn×n′

p .
• Compression matrices F ∈ F`×n′

p and R ∈ F`×n
p .

EP

K

x1
F

...

...

R

..
.

h

...

...

...

. . .

. . .

x0

6

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

• Published at IEEE CSF 2024 [2].
• Based on a block cipher E : Fκ

p × Fn
p → Fn

p .
• CK ,P ,F ,R ,E maps x0 ‖ x1 ∈ Fκ′+n′

p to h ∈ F`
p , with ` ≤ n′.

• Expansion matrices K ∈ Fκ×κ′
p and P ∈ Fn×n′

p .

• Compression matrices F ∈ F`×n′
p and R ∈ F`×n

p .

EP

K

x1
F

...

...

R

..
.

h

...

...

...

. . .

. . .

x0

6

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

• Published at IEEE CSF 2024 [2].
• Based on a block cipher E : Fκ

p × Fn
p → Fn

p .
• CK ,P ,F ,R ,E maps x0 ‖ x1 ∈ Fκ′+n′

p to h ∈ F`
p , with ` ≤ n′.

• Expansion matrices K ∈ Fκ×κ′
p and P ∈ Fn×n′

p .
• Compression matrices F ∈ F`×n′

p and R ∈ F`×n
p .

EP

K

x1
F

...

...

R

..
.

h

...

...

...

. . .

. . .

x0

6

The PGV-ELC modes

We introduced the PGV-ELC family of modes:

• Published at IEEE CSF 2024 [2].
• Based on a block cipher E : Fκ

p × Fn
p → Fn

p .
• CK ,P ,F ,R ,E maps x0 ‖ x1 ∈ Fκ′+n′

p to h ∈ F`
p , with ` ≤ n′.

• Expansion matrices K ∈ Fκ×κ′
p and P ∈ Fn×n′

p .
• Compression matrices F ∈ F`×n′

p and R ∈ F`×n
p .

EP

K

x1
F

...

...

R

..
.

h

...

...

...

. . .

. . .

x0

6

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

• Based on a permutation π : Fm
p → Fm

p .
• CL,F ,R ,π maps x ∈ Fm′

p to h ∈ F`
p , with ` ≤ m′.

• Expansion matrix L ∈ Fm×m′
p .

• Compression matrices F ∈ F`×m′
p and R ∈ F`×m

p .
• Includes existing modes like Jive [11] or Trunc [17, 19].

πLx

F

...

...

R

..
.

h

...

...

...

7

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

• Based on a permutation π : Fm
p → Fm

p .

• CL,F ,R ,π maps x ∈ Fm′
p to h ∈ F`

p , with ` ≤ m′.
• Expansion matrix L ∈ Fm×m′

p .
• Compression matrices F ∈ F`×m′

p and R ∈ F`×m
p .

• Includes existing modes like Jive [11] or Trunc [17, 19].

πLx

F

...

...

R

..
.

h

...

...

...

7

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

• Based on a permutation π : Fm
p → Fm

p .
• CL,F ,R ,π maps x ∈ Fm′

p to h ∈ F`
p , with ` ≤ m′.

• Expansion matrix L ∈ Fm×m′
p .

• Compression matrices F ∈ F`×m′
p and R ∈ F`×m

p .
• Includes existing modes like Jive [11] or Trunc [17, 19].

πLx

F

...

...

R

..
.

h

...

...

...

7

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

• Based on a permutation π : Fm
p → Fm

p .
• CL,F ,R ,π maps x ∈ Fm′

p to h ∈ F`
p , with ` ≤ m′.

• Expansion matrix L ∈ Fm×m′
p .

• Compression matrices F ∈ F`×m′
p and R ∈ F`×m

p .
• Includes existing modes like Jive [11] or Trunc [17, 19].

πLx

F

...

...

R

..
.

h

...

...

...

7

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

• Based on a permutation π : Fm
p → Fm

p .
• CL,F ,R ,π maps x ∈ Fm′

p to h ∈ F`
p , with ` ≤ m′.

• Expansion matrix L ∈ Fm×m′
p .

• Compression matrices F ∈ F`×m′
p and R ∈ F`×m

p .

• Includes existing modes like Jive [11] or Trunc [17, 19].

πLx

F

...

...

R

..
.

h

...

...

...

7

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

• Based on a permutation π : Fm
p → Fm

p .
• CL,F ,R ,π maps x ∈ Fm′

p to h ∈ F`
p , with ` ≤ m′.

• Expansion matrix L ∈ Fm×m′
p .

• Compression matrices F ∈ F`×m′
p and R ∈ F`×m

p .
• Includes existing modes like Jive [11] or Trunc [17, 19].

πLx

F

...

...

R

..
.

h

...

...

...

7

The ELC-P modes

We also introduced the ELC-P family of modes [to appear]:

• Based on a permutation π : Fm
p → Fm

p .
• CL,F ,R ,π maps x ∈ Fm′

p to h ∈ F`
p , with ` ≤ m′.

• Expansion matrix L ∈ Fm×m′
p .

• Compression matrices F ∈ F`×m′
p and R ∈ F`×m

p .
• Includes existing modes like Jive [11] or Trunc [17, 19].

πLx

F

...

...

R

..
.

h

...

...

...

7

Security Results

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

• A model for the underlying primitive(s) P:
� Ideal cipher/permutation E $← Block

(
Fκ

p ,Fn
p
)
, π $← Perm

(
Fm

p
)
.

• An adversary:
� Query-bounded algorithm A with oracle access to P.

• A security notion:
� Collision/preimage resistance, indifferentiability, …

Formalized by an advantage function:

• Advnotion
mode (q) = maxA{Advnotion

mode (A, q)}.

8

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

• A model for the underlying primitive(s) P:
� Ideal cipher/permutation E $← Block

(
Fκ

p ,Fn
p
)
, π $← Perm

(
Fm

p
)
.

• An adversary:
� Query-bounded algorithm A with oracle access to P.

• A security notion:
� Collision/preimage resistance, indifferentiability, …

Formalized by an advantage function:

• Advnotion
mode (q) = maxA{Advnotion

mode (A, q)}.

8

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

• A model for the underlying primitive(s) P:
� Ideal cipher/permutation E $← Block

(
Fκ

p ,Fn
p
)
, π $← Perm

(
Fm

p
)
.

• An adversary:
� Query-bounded algorithm A with oracle access to P.

• A security notion:
� Collision/preimage resistance, indifferentiability, …

Formalized by an advantage function:

• Advnotion
mode (q) = maxA{Advnotion

mode (A, q)}.

8

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

• A model for the underlying primitive(s) P:
� Ideal cipher/permutation E $← Block

(
Fκ

p ,Fn
p
)
, π $← Perm

(
Fm

p
)
.

• An adversary:
� Query-bounded algorithm A with oracle access to P.

• A security notion:
� Collision/preimage resistance, indifferentiability, …

Formalized by an advantage function:

• Advnotion
mode (q) = maxA{Advnotion

mode (A, q)}.

8

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

• A model for the underlying primitive(s) P:
� Ideal cipher/permutation E $← Block

(
Fκ

p ,Fn
p
)
, π $← Perm

(
Fm

p
)
.

• An adversary:
� Query-bounded algorithm A with oracle access to P.

• A security notion:
� Collision/preimage resistance, indifferentiability, …

Formalized by an advantage function:

• Advnotion
mode (q) = maxA{Advnotion

mode (A, q)}.

8

How to Prove Your Security

In order to formally prove that our modes are secure, we need:

• A model for the underlying primitive(s) P:
� Ideal cipher/permutation E $← Block

(
Fκ

p ,Fn
p
)
, π $← Perm

(
Fm

p
)
.

• An adversary:
� Query-bounded algorithm A with oracle access to P.

• A security notion:
� Collision/preimage resistance, indifferentiability, …

Formalized by an advantage function:

• Advnotion
mode (q) = maxA{Advnotion

mode (A, q)}.

8

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AP() : x 6= x ′ ∧ CP(x) = CP

(
x ′)]

For PGV-ELC: CE (x, y) = R · EKy(Px) + Fx:

1. Consider R ,F right-invertible, K ,P left-invertible.
2. Matrices induce partitions over the row/column span.
3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.
5. Still, we obtain Advcol

C (q) ≤ q2+q
p`−q (≈ birthday attack).

�� Similar reasoning for ELC-P modes, preimage resistance.

9

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AP() : x 6= x ′ ∧ CP(x) = CP

(
x ′)]

For PGV-ELC: CE (x, y) = R · EKy(Px) + Fx:

1. Consider R ,F right-invertible, K ,P left-invertible.
2. Matrices induce partitions over the row/column span.
3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.
5. Still, we obtain Advcol

C (q) ≤ q2+q
p`−q (≈ birthday attack).

�� Similar reasoning for ELC-P modes, preimage resistance.

9

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AP() : x 6= x ′ ∧ CP(x) = CP

(
x ′)]

For PGV-ELC: CE (x, y) = R · EKy(Px) + Fx:

1. Consider R ,F right-invertible, K ,P left-invertible.

2. Matrices induce partitions over the row/column span.
3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.
5. Still, we obtain Advcol

C (q) ≤ q2+q
p`−q (≈ birthday attack).

�� Similar reasoning for ELC-P modes, preimage resistance.

9

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AP() : x 6= x ′ ∧ CP(x) = CP

(
x ′)]

For PGV-ELC: CE (x, y) = R · EKy(Px) + Fx:

1. Consider R ,F right-invertible, K ,P left-invertible.
2. Matrices induce partitions over the row/column span.

3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.
5. Still, we obtain Advcol

C (q) ≤ q2+q
p`−q (≈ birthday attack).

�� Similar reasoning for ELC-P modes, preimage resistance.

9

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AP() : x 6= x ′ ∧ CP(x) = CP

(
x ′)]

For PGV-ELC: CE (x, y) = R · EKy(Px) + Fx:

1. Consider R ,F right-invertible, K ,P left-invertible.
2. Matrices induce partitions over the row/column span.
3. Feed-forward addition guarantees one-wayness.

4. A can adaptively exploit partition imbalances.
5. Still, we obtain Advcol

C (q) ≤ q2+q
p`−q (≈ birthday attack).

�� Similar reasoning for ELC-P modes, preimage resistance.

9

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AP() : x 6= x ′ ∧ CP(x) = CP

(
x ′)]

For PGV-ELC: CE (x, y) = R · EKy(Px) + Fx:

1. Consider R ,F right-invertible, K ,P left-invertible.
2. Matrices induce partitions over the row/column span.
3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.

5. Still, we obtain Advcol
C (q) ≤ q2+q

p`−q (≈ birthday attack).

�� Similar reasoning for ELC-P modes, preimage resistance.

9

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AP() : x 6= x ′ ∧ CP(x) = CP

(
x ′)]

For PGV-ELC: CE (x, y) = R · EKy(Px) + Fx:

1. Consider R ,F right-invertible, K ,P left-invertible.
2. Matrices induce partitions over the row/column span.
3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.
5. Still, we obtain Advcol

C (q) ≤ q2+q
p`−q (≈ birthday attack).

�� Similar reasoning for ELC-P modes, preimage resistance.

9

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AP() : x 6= x ′ ∧ CP(x) = CP

(
x ′)]

For PGV-ELC: CE (x, y) = R · EKy(Px) + Fx:

1. Consider R ,F right-invertible, K ,P left-invertible.
2. Matrices induce partitions over the row/column span.
3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.
5. Still, we obtain Advcol

C (q) ≤ q2+q
p`−q (≈ birthday attack).

�� Similar reasoning for ELC-P modes, preimage resistance.

9

Collision Resistance of PGV-ELC and ELC-P

Collision resistance of a compression mode C:

Advcol
C (A, q) = Pr

[(
x, x ′) $←AP() : x 6= x ′ ∧ CP(x) = CP

(
x ′)]

For PGV-ELC: CE (x, y) = R · EKy(Px) + Fx:

1. Consider R ,F right-invertible, K ,P left-invertible.
2. Matrices induce partitions over the row/column span.
3. Feed-forward addition guarantees one-wayness.
4. A can adaptively exploit partition imbalances.
5. Still, we obtain Advcol

C (q) ≤ q2+q
p`−q (≈ birthday attack).

�� Similar reasoning for ELC-P modes, preimage resistance.

9

How to choose your matrix?

Consider ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

• How to choose the matrix R?
� Any pseudo-invertible matrix will do.
� What if we weaken our model?

• A has access to an oracle Ot , with ` < t ≤ m:
� Tr

(
π
(
Ot

(
v ∈ Ft

p
)))

= v
• If R is pseudo-identity (i.e. truncation), easy to get collisions!

� Choose R MDS.

• Related: AES last round missing MixColumns [13].

10

How to choose your matrix?

Consider ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

• How to choose the matrix R?

� Any pseudo-invertible matrix will do.
� What if we weaken our model?

• A has access to an oracle Ot , with ` < t ≤ m:
� Tr

(
π
(
Ot

(
v ∈ Ft

p
)))

= v
• If R is pseudo-identity (i.e. truncation), easy to get collisions!

� Choose R MDS.

• Related: AES last round missing MixColumns [13].

10

How to choose your matrix?

Consider ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

• How to choose the matrix R?
� Any pseudo-invertible matrix will do.

� What if we weaken our model?
• A has access to an oracle Ot , with ` < t ≤ m:

� Tr
(
π
(
Ot

(
v ∈ Ft

p
)))

= v
• If R is pseudo-identity (i.e. truncation), easy to get collisions!

� Choose R MDS.

• Related: AES last round missing MixColumns [13].

10

How to choose your matrix?

Consider ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

• How to choose the matrix R?
� Any pseudo-invertible matrix will do.
� What if we weaken our model?

• A has access to an oracle Ot , with ` < t ≤ m:
� Tr

(
π
(
Ot

(
v ∈ Ft

p
)))

= v
• If R is pseudo-identity (i.e. truncation), easy to get collisions!

� Choose R MDS.

• Related: AES last round missing MixColumns [13].

10

How to choose your matrix?

Consider ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

• How to choose the matrix R?
� Any pseudo-invertible matrix will do.
� What if we weaken our model?

• A has access to an oracle Ot , with ` < t ≤ m:

� Tr
(
π
(
Ot

(
v ∈ Ft

p
)))

= v
• If R is pseudo-identity (i.e. truncation), easy to get collisions!

� Choose R MDS.

• Related: AES last round missing MixColumns [13].

10

How to choose your matrix?

Consider ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

• How to choose the matrix R?
� Any pseudo-invertible matrix will do.
� What if we weaken our model?

• A has access to an oracle Ot , with ` < t ≤ m:
� Tr

(
π
(
Ot

(
v ∈ Ft

p
)))

= v

• If R is pseudo-identity (i.e. truncation), easy to get collisions!
� Choose R MDS.

• Related: AES last round missing MixColumns [13].

10

How to choose your matrix?

Consider ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

• How to choose the matrix R?
� Any pseudo-invertible matrix will do.
� What if we weaken our model?

• A has access to an oracle Ot , with ` < t ≤ m:
� Tr

(
π
(
Ot

(
v ∈ Ft

p
)))

= v
• If R is pseudo-identity (i.e. truncation), easy to get collisions!

� Choose R MDS.

• Related: AES last round missing MixColumns [13].

10

How to choose your matrix?

Consider ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

• How to choose the matrix R?
� Any pseudo-invertible matrix will do.
� What if we weaken our model?

• A has access to an oracle Ot , with ` < t ≤ m:
� Tr

(
π
(
Ot

(
v ∈ Ft

p
)))

= v
• If R is pseudo-identity (i.e. truncation), easy to get collisions!

� Choose R MDS.

• Related: AES last round missing MixColumns [13].

10

How to choose your matrix?

Consider ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

• How to choose the matrix R?
� Any pseudo-invertible matrix will do.
� What if we weaken our model?

• A has access to an oracle Ot , with ` < t ≤ m:
� Tr

(
π
(
Ot

(
v ∈ Ft

p
)))

= v
• If R is pseudo-identity (i.e. truncation), easy to get collisions!

� Choose R MDS.

• Related: AES last round missing MixColumns [13].

10

How to choose your matrix?

Consider ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

• How to choose the matrix R?
� Any pseudo-invertible matrix will do.
� What if we weaken our model?

• A has access to an oracle Ot , with ` < t ≤ m:
� Tr

(
π
(
Ot

(
v ∈ Ft

p
)))

= v
• If R is pseudo-identity (i.e. truncation), easy to get collisions!

� Choose R MDS.

• Related: AES last round missing MixColumns [13].

10

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

• Indifferentiability ≈ compositional indistinguishability.
• (FIL) Random Oracle H $← Func

(
Fm

p ,F`
p
)
.

• Simulator S must mimic the primitive P.
� Can query H, should be (query) efficient.

• Differentiator D must tell (C,P) apart from (H,S).

C P H S

D

11

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

• Indifferentiability ≈ compositional indistinguishability.

• (FIL) Random Oracle H $← Func
(
Fm

p ,F`
p
)
.

• Simulator S must mimic the primitive P.
� Can query H, should be (query) efficient.

• Differentiator D must tell (C,P) apart from (H,S).

C P H S

D

11

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

• Indifferentiability ≈ compositional indistinguishability.
• (FIL) Random Oracle H $← Func

(
Fm

p ,F`
p
)
.

• Simulator S must mimic the primitive P.
� Can query H, should be (query) efficient.

• Differentiator D must tell (C,P) apart from (H,S).

C P H S

D

11

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

• Indifferentiability ≈ compositional indistinguishability.
• (FIL) Random Oracle H $← Func

(
Fm

p ,F`
p
)
.

• Simulator S must mimic the primitive P.
� Can query H, should be (query) efficient.

• Differentiator D must tell (C,P) apart from (H,S).

C P H S

D

11

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

• Indifferentiability ≈ compositional indistinguishability.
• (FIL) Random Oracle H $← Func

(
Fm

p ,F`
p
)
.

• Simulator S must mimic the primitive P.
� Can query H, should be (query) efficient.

• Differentiator D must tell (C,P) apart from (H,S).

C P H S

D

11

Random Oracle Indifferentiability

Sometimes collision/preimage resistance is not enough:

• Indifferentiability ≈ compositional indistinguishability.
• (FIL) Random Oracle H $← Func

(
Fm

p ,F`
p
)
.

• Simulator S must mimic the primitive P.
� Can query H, should be (query) efficient.

• Differentiator D must tell (C,P) apart from (H,S).

C P H S

D

11

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

1. Again, R ,F right-invertible, L left-invertible.
2. We can devise S such that:

� Keeps track of queries coming from D.
� Makes (at most) one H-query per call.

3. D can differentiate S from π via backward queries:
� pm − pm′ of them are preimage-free (L(L+y) 6= y).

4. We can bound Advdif
C (q) ≤ q

pm−m′−q
� q is the sum of primitive and construction queries.

� For PGV-ELC: Advdif
C (q) ≤ q

pn−n′−q .

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

1. Again, R ,F right-invertible, L left-invertible.

2. We can devise S such that:
� Keeps track of queries coming from D.
� Makes (at most) one H-query per call.

3. D can differentiate S from π via backward queries:
� pm − pm′ of them are preimage-free (L(L+y) 6= y).

4. We can bound Advdif
C (q) ≤ q

pm−m′−q
� q is the sum of primitive and construction queries.

� For PGV-ELC: Advdif
C (q) ≤ q

pn−n′−q .

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

1. Again, R ,F right-invertible, L left-invertible.
2. We can devise S such that:

� Keeps track of queries coming from D.
� Makes (at most) one H-query per call.

3. D can differentiate S from π via backward queries:
� pm − pm′ of them are preimage-free (L(L+y) 6= y).

4. We can bound Advdif
C (q) ≤ q

pm−m′−q
� q is the sum of primitive and construction queries.

� For PGV-ELC: Advdif
C (q) ≤ q

pn−n′−q .

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

1. Again, R ,F right-invertible, L left-invertible.
2. We can devise S such that:

� Keeps track of queries coming from D.

� Makes (at most) one H-query per call.
3. D can differentiate S from π via backward queries:

� pm − pm′ of them are preimage-free (L(L+y) 6= y).
4. We can bound Advdif

C (q) ≤ q
pm−m′−q

� q is the sum of primitive and construction queries.

� For PGV-ELC: Advdif
C (q) ≤ q

pn−n′−q .

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

1. Again, R ,F right-invertible, L left-invertible.
2. We can devise S such that:

� Keeps track of queries coming from D.
� Makes (at most) one H-query per call.

3. D can differentiate S from π via backward queries:
� pm − pm′ of them are preimage-free (L(L+y) 6= y).

4. We can bound Advdif
C (q) ≤ q

pm−m′−q
� q is the sum of primitive and construction queries.

� For PGV-ELC: Advdif
C (q) ≤ q

pn−n′−q .

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

1. Again, R ,F right-invertible, L left-invertible.
2. We can devise S such that:

� Keeps track of queries coming from D.
� Makes (at most) one H-query per call.

3. D can differentiate S from π via backward queries:

� pm − pm′ of them are preimage-free (L(L+y) 6= y).
4. We can bound Advdif

C (q) ≤ q
pm−m′−q

� q is the sum of primitive and construction queries.

� For PGV-ELC: Advdif
C (q) ≤ q

pn−n′−q .

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

1. Again, R ,F right-invertible, L left-invertible.
2. We can devise S such that:

� Keeps track of queries coming from D.
� Makes (at most) one H-query per call.

3. D can differentiate S from π via backward queries:
� pm − pm′ of them are preimage-free (L(L+y) 6= y).

4. We can bound Advdif
C (q) ≤ q

pm−m′−q
� q is the sum of primitive and construction queries.

� For PGV-ELC: Advdif
C (q) ≤ q

pn−n′−q .

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

1. Again, R ,F right-invertible, L left-invertible.
2. We can devise S such that:

� Keeps track of queries coming from D.
� Makes (at most) one H-query per call.

3. D can differentiate S from π via backward queries:
� pm − pm′ of them are preimage-free (L(L+y) 6= y).

4. We can bound Advdif
C (q) ≤ q

pm−m′−q
� q is the sum of primitive and construction queries.

� For PGV-ELC: Advdif
C (q) ≤ q

pn−n′−q .

12

Indifferentiability of PGV-ELC and ELC-P

For ELC-P: Cπ(x, y) = R · π(Lx) + Fx:

1. Again, R ,F right-invertible, L left-invertible.
2. We can devise S such that:

� Keeps track of queries coming from D.
� Makes (at most) one H-query per call.

3. D can differentiate S from π via backward queries:
� pm − pm′ of them are preimage-free (L(L+y) 6= y).

4. We can bound Advdif
C (q) ≤ q

pm−m′−q
� q is the sum of primitive and construction queries.

� For PGV-ELC: Advdif
C (q) ≤ q

pn−n′−q .

12

Modes security comparison

Mode Primitive col pre dif

ELC-P Perm(m) q2/p` q/p` q/pm−m′

PGV-ELC Block(κ, n) q2/p` q/p` q/pn−n′

Sponge1 Perm(m) q2/pmin{`,m−m′} q/pmin{`,m−m′} q2/pm−m′

Assuming m′ = n′ + κ′ and m = n + κ:

• ELC-P and PGV-LC have optimal col and pre resistance.
• col and pre resistance of Sponge are sub-optimal.
• ELC-P indifferentiability is better than PGV-ELC.

1DIF advantage drops to q/pm′−m for single-iteration.

13

Modes security comparison

Mode Primitive col pre dif

ELC-P Perm(m) q2/p` q/p` q/pm−m′

PGV-ELC Block(κ, n) q2/p` q/p` q/pn−n′

Sponge1 Perm(m) q2/pmin{`,m−m′} q/pmin{`,m−m′} q2/pm−m′

Assuming m′ = n′ + κ′ and m = n + κ:

• ELC-P and PGV-LC have optimal col and pre resistance.
• col and pre resistance of Sponge are sub-optimal.
• ELC-P indifferentiability is better than PGV-ELC.

1DIF advantage drops to q/pm′−m for single-iteration.

13

Modes security comparison

Mode Primitive col pre dif

ELC-P Perm(m) q2/p` q/p` q/pm−m′

PGV-ELC Block(κ, n) q2/p` q/p` q/pn−n′

Sponge1 Perm(m) q2/pmin{`,m−m′} q/pmin{`,m−m′} q2/pm−m′

Assuming m′ = n′ + κ′ and m = n + κ:

• ELC-P and PGV-LC have optimal col and pre resistance.

• col and pre resistance of Sponge are sub-optimal.
• ELC-P indifferentiability is better than PGV-ELC.

1DIF advantage drops to q/pm′−m for single-iteration.

13

Modes security comparison

Mode Primitive col pre dif

ELC-P Perm(m) q2/p` q/p` q/pm−m′

PGV-ELC Block(κ, n) q2/p` q/p` q/pn−n′

Sponge1 Perm(m) q2/pmin{`,m−m′} q/pmin{`,m−m′} q2/pm−m′

Assuming m′ = n′ + κ′ and m = n + κ:

• ELC-P and PGV-LC have optimal col and pre resistance.
• col and pre resistance of Sponge are sub-optimal.

• ELC-P indifferentiability is better than PGV-ELC.

1DIF advantage drops to q/pm′−m for single-iteration.

13

Modes security comparison

Mode Primitive col pre dif

ELC-P Perm(m) q2/p` q/p` q/pm−m′

PGV-ELC Block(κ, n) q2/p` q/p` q/pn−n′

Sponge1 Perm(m) q2/pmin{`,m−m′} q/pmin{`,m−m′} q2/pm−m′

Assuming m′ = n′ + κ′ and m = n + κ:

• ELC-P and PGV-LC have optimal col and pre resistance.
• col and pre resistance of Sponge are sub-optimal.
• ELC-P indifferentiability is better than PGV-ELC.

1DIF advantage drops to q/pm′−m for single-iteration.

13

Modes security comparison

Mode Primitive col pre dif

ELC-P Perm(m) q2/p` q/p` q/pm−m′

PGV-ELC Block(κ, n) q2/p` q/p` q/pn−n′

Sponge1 Perm(m) q2/pmin{`,m−m′} q/pmin{`,m−m′} q2/pm−m′

Assuming m′ = n′ + κ′ and m = n + κ:

• ELC-P and PGV-LC have optimal col and pre resistance.
• col and pre resistance of Sponge are sub-optimal.
• ELC-P indifferentiability is better than PGV-ELC.

1DIF advantage drops to q/pm′−m for single-iteration.

13

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]
• Arbitrarily sized block ciphers/permutations.
• Secure parametrizations established via cryptanalysis.
• Large instances more efficient than black-box combinations.
� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.
• Fiat-Shamir with known (reasonably short) message length.
� Area cost, especially for HW implementations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]

• Arbitrarily sized block ciphers/permutations.
• Secure parametrizations established via cryptanalysis.
• Large instances more efficient than black-box combinations.
� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.
• Fiat-Shamir with known (reasonably short) message length.
� Area cost, especially for HW implementations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]
• Arbitrarily sized block ciphers/permutations.

• Secure parametrizations established via cryptanalysis.
• Large instances more efficient than black-box combinations.
� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.
• Fiat-Shamir with known (reasonably short) message length.
� Area cost, especially for HW implementations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]
• Arbitrarily sized block ciphers/permutations.
• Secure parametrizations established via cryptanalysis.

• Large instances more efficient than black-box combinations.
� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.
• Fiat-Shamir with known (reasonably short) message length.
� Area cost, especially for HW implementations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]
• Arbitrarily sized block ciphers/permutations.
• Secure parametrizations established via cryptanalysis.
• Large instances more efficient than black-box combinations.

� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.
• Fiat-Shamir with known (reasonably short) message length.
� Area cost, especially for HW implementations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]
• Arbitrarily sized block ciphers/permutations.
• Secure parametrizations established via cryptanalysis.
• Large instances more efficient than black-box combinations.
� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.
• Fiat-Shamir with known (reasonably short) message length.
� Area cost, especially for HW implementations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]
• Arbitrarily sized block ciphers/permutations.
• Secure parametrizations established via cryptanalysis.
• Large instances more efficient than black-box combinations.
� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.
• Fiat-Shamir with known (reasonably short) message length.
� Area cost, especially for HW implementations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]
• Arbitrarily sized block ciphers/permutations.
• Secure parametrizations established via cryptanalysis.
• Large instances more efficient than black-box combinations.
� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.

• Fiat-Shamir with known (reasonably short) message length.
� Area cost, especially for HW implementations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]
• Arbitrarily sized block ciphers/permutations.
• Secure parametrizations established via cryptanalysis.
• Large instances more efficient than black-box combinations.
� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.
• Fiat-Shamir with known (reasonably short) message length.

� Area cost, especially for HW implementations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]
• Arbitrarily sized block ciphers/permutations.
• Secure parametrizations established via cryptanalysis.
• Large instances more efficient than black-box combinations.
� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.
• Fiat-Shamir with known (reasonably short) message length.
� Area cost, especially for HW implementations.

14

Flexibility of the PGV-ELC/ELC-P modes

Arithmetization-Oriented design strategies:

• MARVELlous, Hades, Anemoi, GTDS, … [3, 20, 11, 26]
• Arbitrarily sized block ciphers/permutations.
• Secure parametrizations established via cryptanalysis.
• Large instances more efficient than black-box combinations.
� Concrete instances subject to tailored attacks [4, 23].

How to best use PGV-ELC/ELC-P modes?

• High-arity/mixed-arity Merkle-Trees.
• Fiat-Shamir with known (reasonably short) message length.
� Area cost, especially for HW implementations.

14

Experiments

Target Design Strategies

Hades (Poseidon):
• ‘Partial’ SPN structure.

• High number of rounds.
• Lightweight key schedule.

MARVELlous (Rescue):
• ‘Double’ SPN structure.
• Low number of rounds.
• Heavyweight key schedule.

15

Target Design Strategies

Hades (Poseidon):
• ‘Partial’ SPN structure.
• High number of rounds.

• Lightweight key schedule.

MARVELlous (Rescue):
• ‘Double’ SPN structure.
• Low number of rounds.
• Heavyweight key schedule.

15

Target Design Strategies

Hades (Poseidon):
• ‘Partial’ SPN structure.
• High number of rounds.
• Lightweight key schedule.

MARVELlous (Rescue):
• ‘Double’ SPN structure.
• Low number of rounds.
• Heavyweight key schedule.

15

Target Design Strategies

Hades (Poseidon):
• ‘Partial’ SPN structure.
• High number of rounds.
• Lightweight key schedule.

MARVELlous (Rescue):
• ‘Double’ SPN structure.
• Low number of rounds.
• Heavyweight key schedule.

15

Target Design Strategies

Hades (Poseidon):
• ‘Partial’ SPN structure.
• High number of rounds.
• Lightweight key schedule.

MARVELlous (Rescue):

• ‘Double’ SPN structure.
• Low number of rounds.
• Heavyweight key schedule.

15

Target Design Strategies

Hades (Poseidon):
• ‘Partial’ SPN structure.
• High number of rounds.
• Lightweight key schedule.

MARVELlous (Rescue):
• ‘Double’ SPN structure.

• Low number of rounds.
• Heavyweight key schedule.

15

Target Design Strategies

Hades (Poseidon):
• ‘Partial’ SPN structure.
• High number of rounds.
• Lightweight key schedule.

MARVELlous (Rescue):
• ‘Double’ SPN structure.
• Low number of rounds.

• Heavyweight key schedule.

15

Target Design Strategies

Hades (Poseidon):
• ‘Partial’ SPN structure.
• High number of rounds.
• Lightweight key schedule.

MARVELlous (Rescue):
• ‘Double’ SPN structure.
• Low number of rounds.
• Heavyweight key schedule.

15

Target Design Strategies

Hades (Poseidon):
• ‘Partial’ SPN structure.
• High number of rounds.
• Lightweight key schedule.

MARVELlous (Rescue):
• ‘Double’ SPN structure.
• Low number of rounds.
• Heavyweight key schedule.

15

Concrete Instantiances

How did we parametrize Hades and Rescue:

• Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).
• Sbox: α = min{a | gcd(a, p − 1) = 1}.
• Affine layers use Hilbert’s MDS matrix: mi,j =

1
i+j−1 .

� Also used for Poseidon’s key scheduler.

• Round numbers computed according to [18, 27].
• All compression/expansion matrices set to pseudo-identity.

� Match the Trunc mode used in e.g. Griffin [16].

• Security target: 128 bits of collision resistance.

16

Concrete Instantiances

How did we parametrize Hades and Rescue:

• Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).

• Sbox: α = min{a | gcd(a, p − 1) = 1}.
• Affine layers use Hilbert’s MDS matrix: mi,j =

1
i+j−1 .

� Also used for Poseidon’s key scheduler.

• Round numbers computed according to [18, 27].
• All compression/expansion matrices set to pseudo-identity.

� Match the Trunc mode used in e.g. Griffin [16].

• Security target: 128 bits of collision resistance.

16

Concrete Instantiances

How did we parametrize Hades and Rescue:

• Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).
• Sbox: α = min{a | gcd(a, p − 1) = 1}.

• Affine layers use Hilbert’s MDS matrix: mi,j =
1

i+j−1 .
� Also used for Poseidon’s key scheduler.

• Round numbers computed according to [18, 27].
• All compression/expansion matrices set to pseudo-identity.

� Match the Trunc mode used in e.g. Griffin [16].

• Security target: 128 bits of collision resistance.

16

Concrete Instantiances

How did we parametrize Hades and Rescue:

• Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).
• Sbox: α = min{a | gcd(a, p − 1) = 1}.
• Affine layers use Hilbert’s MDS matrix: mi,j =

1
i+j−1 .

� Also used for Poseidon’s key scheduler.

• Round numbers computed according to [18, 27].
• All compression/expansion matrices set to pseudo-identity.

� Match the Trunc mode used in e.g. Griffin [16].

• Security target: 128 bits of collision resistance.

16

Concrete Instantiances

How did we parametrize Hades and Rescue:

• Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).
• Sbox: α = min{a | gcd(a, p − 1) = 1}.
• Affine layers use Hilbert’s MDS matrix: mi,j =

1
i+j−1 .

� Also used for Poseidon’s key scheduler.

• Round numbers computed according to [18, 27].

• All compression/expansion matrices set to pseudo-identity.
� Match the Trunc mode used in e.g. Griffin [16].

• Security target: 128 bits of collision resistance.

16

Concrete Instantiances

How did we parametrize Hades and Rescue:

• Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).
• Sbox: α = min{a | gcd(a, p − 1) = 1}.
• Affine layers use Hilbert’s MDS matrix: mi,j =

1
i+j−1 .

� Also used for Poseidon’s key scheduler.

• Round numbers computed according to [18, 27].
• All compression/expansion matrices set to pseudo-identity.

� Match the Trunc mode used in e.g. Griffin [16].

• Security target: 128 bits of collision resistance.

16

Concrete Instantiances

How did we parametrize Hades and Rescue:

• Fields: Goldilocks (64 bits) and BLS12 scalar (256 bits).
• Sbox: α = min{a | gcd(a, p − 1) = 1}.
• Affine layers use Hilbert’s MDS matrix: mi,j =

1
i+j−1 .

� Also used for Poseidon’s key scheduler.

• Round numbers computed according to [18, 27].
• All compression/expansion matrices set to pseudo-identity.

� Match the Trunc mode used in e.g. Griffin [16].

• Security target: 128 bits of collision resistance.

16

Plain performance

Native execution performance:

• C++ software implementation2.
• Light scheduler or long state ⇒ PGV-ELC.
• Heavy scheduler and short state ⇒ ELC-P.
� PGV-ELC provides more parallelization opportunities.

log2(p) ≈ 256 log2(p) ≈ 64

Rate LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 7.52 µs 12.3 µs 13.2 µs 4.12 µs 2.57 µs 8.49 µs
4:1 19.3 µs 12.1 µs 28.2 µs 14.8 µs 7.02 µs 35.0 µs
8:1 69.7 µs 36.8 µs 84.4 µs 164 µs 27.5 µs 223.6 µs

Re
sc

ue

2:1 183 µs 385 µs 208 µs 22.1 µs 24.2 µs 33.3 µs
4:1 217 µs 401 µs 220 µs 47.1 µs 43.9 µs 58.9 µs
8:1 320 µs 458 µs 354 µs 136 µs 92.4 µs 143 µs

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -O3 -march=native

17

Plain performance

Native execution performance:

• C++ software implementation2.

• Light scheduler or long state ⇒ PGV-ELC.
• Heavy scheduler and short state ⇒ ELC-P.
� PGV-ELC provides more parallelization opportunities.

log2(p) ≈ 256 log2(p) ≈ 64

Rate LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 7.52 µs 12.3 µs 13.2 µs 4.12 µs 2.57 µs 8.49 µs
4:1 19.3 µs 12.1 µs 28.2 µs 14.8 µs 7.02 µs 35.0 µs
8:1 69.7 µs 36.8 µs 84.4 µs 164 µs 27.5 µs 223.6 µs

Re
sc

ue

2:1 183 µs 385 µs 208 µs 22.1 µs 24.2 µs 33.3 µs
4:1 217 µs 401 µs 220 µs 47.1 µs 43.9 µs 58.9 µs
8:1 320 µs 458 µs 354 µs 136 µs 92.4 µs 143 µs

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -O3 -march=native

17

Plain performance

Native execution performance:

• C++ software implementation2.
• Light scheduler or long state ⇒ PGV-ELC.

• Heavy scheduler and short state ⇒ ELC-P.
� PGV-ELC provides more parallelization opportunities.

log2(p) ≈ 256 log2(p) ≈ 64

Rate LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 7.52 µs 12.3 µs 13.2 µs 4.12 µs 2.57 µs 8.49 µs
4:1 19.3 µs 12.1 µs 28.2 µs 14.8 µs 7.02 µs 35.0 µs
8:1 69.7 µs 36.8 µs 84.4 µs 164 µs 27.5 µs 223.6 µs

Re
sc

ue

2:1 183 µs 385 µs 208 µs 22.1 µs 24.2 µs 33.3 µs
4:1 217 µs 401 µs 220 µs 47.1 µs 43.9 µs 58.9 µs
8:1 320 µs 458 µs 354 µs 136 µs 92.4 µs 143 µs

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -O3 -march=native

17

Plain performance

Native execution performance:

• C++ software implementation2.
• Light scheduler or long state ⇒ PGV-ELC.
• Heavy scheduler and short state ⇒ ELC-P.

� PGV-ELC provides more parallelization opportunities.

log2(p) ≈ 256 log2(p) ≈ 64

Rate LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 7.52 µs 12.3 µs 13.2 µs 4.12 µs 2.57 µs 8.49 µs
4:1 19.3 µs 12.1 µs 28.2 µs 14.8 µs 7.02 µs 35.0 µs
8:1 69.7 µs 36.8 µs 84.4 µs 164 µs 27.5 µs 223.6 µs

Re
sc

ue

2:1 183 µs 385 µs 208 µs 22.1 µs 24.2 µs 33.3 µs
4:1 217 µs 401 µs 220 µs 47.1 µs 43.9 µs 58.9 µs
8:1 320 µs 458 µs 354 µs 136 µs 92.4 µs 143 µs

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -O3 -march=native

17

Plain performance

Native execution performance:

• C++ software implementation2.
• Light scheduler or long state ⇒ PGV-ELC.
• Heavy scheduler and short state ⇒ ELC-P.
� PGV-ELC provides more parallelization opportunities.

log2(p) ≈ 256 log2(p) ≈ 64

Rate LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 7.52 µs 12.3 µs 13.2 µs 4.12 µs 2.57 µs 8.49 µs
4:1 19.3 µs 12.1 µs 28.2 µs 14.8 µs 7.02 µs 35.0 µs
8:1 69.7 µs 36.8 µs 84.4 µs 164 µs 27.5 µs 223.6 µs

Re
sc

ue

2:1 183 µs 385 µs 208 µs 22.1 µs 24.2 µs 33.3 µs
4:1 217 µs 401 µs 220 µs 47.1 µs 43.9 µs 58.9 µs
8:1 320 µs 458 µs 354 µs 136 µs 92.4 µs 143 µs

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -O3 -march=native

17

Plain performance

Native execution performance:

• C++ software implementation2.
• Light scheduler or long state ⇒ PGV-ELC.
• Heavy scheduler and short state ⇒ ELC-P.
� PGV-ELC provides more parallelization opportunities.

log2(p) ≈ 256 log2(p) ≈ 64

Rate LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 7.52 µs 12.3 µs 13.2 µs 4.12 µs 2.57 µs 8.49 µs
4:1 19.3 µs 12.1 µs 28.2 µs 14.8 µs 7.02 µs 35.0 µs
8:1 69.7 µs 36.8 µs 84.4 µs 164 µs 27.5 µs 223.6 µs

Re
sc

ue

2:1 183 µs 385 µs 208 µs 22.1 µs 24.2 µs 33.3 µs
4:1 217 µs 401 µs 220 µs 47.1 µs 43.9 µs 58.9 µs
8:1 320 µs 458 µs 354 µs 136 µs 92.4 µs 143 µs

2Intel Core i9-13900KF, Clear Linux, libarith, icpx -O3 -march=native

17

Groth16 benchmarks

We considered the Groth16 ZK-SNARK [21]:

• Requires a pairing-friendly elliptic curve like BLS12-381.
• Preimage-verification circuit3:

� R1CS arithmetization: Ax � Bx = Cx.
� Complexity depends mainly on the # of multiplications.

R1CS constraints Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 221 221 246 72.9ms 73.0ms 75.8ms
4:1 268 218 293 83.0ms 73.4ms 89.4ms
8:1 368 268 393 105ms 83.9ms 115ms

Re
sc

ue

2:1 240 432 252 67.2ms 107ms 67.7ms
4:1 264 480 270 71.1ms 116ms 73.4ms
8:1 384 528 432 102ms 126ms 110ms

3Same setup, + libsnark.

18

Groth16 benchmarks

We considered the Groth16 ZK-SNARK [21]:

• Requires a pairing-friendly elliptic curve like BLS12-381.

• Preimage-verification circuit3:
� R1CS arithmetization: Ax � Bx = Cx.
� Complexity depends mainly on the # of multiplications.

R1CS constraints Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 221 221 246 72.9ms 73.0ms 75.8ms
4:1 268 218 293 83.0ms 73.4ms 89.4ms
8:1 368 268 393 105ms 83.9ms 115ms

Re
sc

ue

2:1 240 432 252 67.2ms 107ms 67.7ms
4:1 264 480 270 71.1ms 116ms 73.4ms
8:1 384 528 432 102ms 126ms 110ms

3Same setup, + libsnark.

18

Groth16 benchmarks

We considered the Groth16 ZK-SNARK [21]:

• Requires a pairing-friendly elliptic curve like BLS12-381.
• Preimage-verification circuit3:

� R1CS arithmetization: Ax � Bx = Cx.
� Complexity depends mainly on the # of multiplications.

R1CS constraints Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 221 221 246 72.9ms 73.0ms 75.8ms
4:1 268 218 293 83.0ms 73.4ms 89.4ms
8:1 368 268 393 105ms 83.9ms 115ms

Re
sc

ue

2:1 240 432 252 67.2ms 107ms 67.7ms
4:1 264 480 270 71.1ms 116ms 73.4ms
8:1 384 528 432 102ms 126ms 110ms

3Same setup, + libsnark.

18

Groth16 benchmarks

We considered the Groth16 ZK-SNARK [21]:

• Requires a pairing-friendly elliptic curve like BLS12-381.
• Preimage-verification circuit3:

� R1CS arithmetization: Ax � Bx = Cx.

� Complexity depends mainly on the # of multiplications.

R1CS constraints Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 221 221 246 72.9ms 73.0ms 75.8ms
4:1 268 218 293 83.0ms 73.4ms 89.4ms
8:1 368 268 393 105ms 83.9ms 115ms

Re
sc

ue

2:1 240 432 252 67.2ms 107ms 67.7ms
4:1 264 480 270 71.1ms 116ms 73.4ms
8:1 384 528 432 102ms 126ms 110ms

3Same setup, + libsnark.

18

Groth16 benchmarks

We considered the Groth16 ZK-SNARK [21]:

• Requires a pairing-friendly elliptic curve like BLS12-381.
• Preimage-verification circuit3:

� R1CS arithmetization: Ax � Bx = Cx.
� Complexity depends mainly on the # of multiplications.

R1CS constraints Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 221 221 246 72.9ms 73.0ms 75.8ms
4:1 268 218 293 83.0ms 73.4ms 89.4ms
8:1 368 268 393 105ms 83.9ms 115ms

Re
sc

ue

2:1 240 432 252 67.2ms 107ms 67.7ms
4:1 264 480 270 71.1ms 116ms 73.4ms
8:1 384 528 432 102ms 126ms 110ms

3Same setup, + libsnark.

18

Groth16 benchmarks

We considered the Groth16 ZK-SNARK [21]:

• Requires a pairing-friendly elliptic curve like BLS12-381.
• Preimage-verification circuit3:

� R1CS arithmetization: Ax � Bx = Cx.
� Complexity depends mainly on the # of multiplications.

R1CS constraints Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 221 221 246 72.9ms 73.0ms 75.8ms
4:1 268 218 293 83.0ms 73.4ms 89.4ms
8:1 368 268 393 105ms 83.9ms 115ms

Re
sc

ue

2:1 240 432 252 67.2ms 107ms 67.7ms
4:1 264 480 270 71.1ms 116ms 73.4ms
8:1 384 528 432 102ms 126ms 110ms

3Same setup, + libsnark.

18

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

• Uses FRI [5] over the Goldilocks field (high 2-adicity).
• Employs Plonkish arithmetization:

� Based on PlonK [14] + custom gates.
� Applies optimizations to the circuit description.

gates Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 122 70 259 11.3ms 11.1ms 16.5ms
4:1 439 226 668 26.0ms 16.2ms 27.1ms
8:1 2065 847 2864 90.8ms 47.5ms 92.9ms

Re
sc

ue

2:1 91 75 175 10.9ms 8.58ms 17.2ms
4:1 284 182 418 16.8ms 11.5ms 27.1ms
8:1 976 568 1213 47.9ms 26.5ms 49.0ms

19

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

• Uses FRI [5] over the Goldilocks field (high 2-adicity).

• Employs Plonkish arithmetization:
� Based on PlonK [14] + custom gates.
� Applies optimizations to the circuit description.

gates Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 122 70 259 11.3ms 11.1ms 16.5ms
4:1 439 226 668 26.0ms 16.2ms 27.1ms
8:1 2065 847 2864 90.8ms 47.5ms 92.9ms

Re
sc

ue

2:1 91 75 175 10.9ms 8.58ms 17.2ms
4:1 284 182 418 16.8ms 11.5ms 27.1ms
8:1 976 568 1213 47.9ms 26.5ms 49.0ms

19

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

• Uses FRI [5] over the Goldilocks field (high 2-adicity).
• Employs Plonkish arithmetization:

� Based on PlonK [14] + custom gates.
� Applies optimizations to the circuit description.

gates Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 122 70 259 11.3ms 11.1ms 16.5ms
4:1 439 226 668 26.0ms 16.2ms 27.1ms
8:1 2065 847 2864 90.8ms 47.5ms 92.9ms

Re
sc

ue

2:1 91 75 175 10.9ms 8.58ms 17.2ms
4:1 284 182 418 16.8ms 11.5ms 27.1ms
8:1 976 568 1213 47.9ms 26.5ms 49.0ms

19

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

• Uses FRI [5] over the Goldilocks field (high 2-adicity).
• Employs Plonkish arithmetization:

� Based on PlonK [14] + custom gates.

� Applies optimizations to the circuit description.

gates Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 122 70 259 11.3ms 11.1ms 16.5ms
4:1 439 226 668 26.0ms 16.2ms 27.1ms
8:1 2065 847 2864 90.8ms 47.5ms 92.9ms

Re
sc

ue

2:1 91 75 175 10.9ms 8.58ms 17.2ms
4:1 284 182 418 16.8ms 11.5ms 27.1ms
8:1 976 568 1213 47.9ms 26.5ms 49.0ms

19

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

• Uses FRI [5] over the Goldilocks field (high 2-adicity).
• Employs Plonkish arithmetization:

� Based on PlonK [14] + custom gates.
� Applies optimizations to the circuit description.

gates Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 122 70 259 11.3ms 11.1ms 16.5ms
4:1 439 226 668 26.0ms 16.2ms 27.1ms
8:1 2065 847 2864 90.8ms 47.5ms 92.9ms

Re
sc

ue

2:1 91 75 175 10.9ms 8.58ms 17.2ms
4:1 284 182 418 16.8ms 11.5ms 27.1ms
8:1 976 568 1213 47.9ms 26.5ms 49.0ms

19

Plonky2 benchmarks

We also considered the Plonky2 ZK-SNARK [28]:

• Uses FRI [5] over the Goldilocks field (high 2-adicity).
• Employs Plonkish arithmetization:

� Based on PlonK [14] + custom gates.
� Applies optimizations to the circuit description.

gates Proof Generation time
Ratio LC-P PGV Sponge LC-P PGV Sponge

H
ad

es 2:1 122 70 259 11.3ms 11.1ms 16.5ms
4:1 439 226 668 26.0ms 16.2ms 27.1ms
8:1 2065 847 2864 90.8ms 47.5ms 92.9ms

Re
sc

ue

2:1 91 75 175 10.9ms 8.58ms 17.2ms
4:1 284 182 418 16.8ms 11.5ms 27.1ms
8:1 976 568 1213 47.9ms 26.5ms 49.0ms

19

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

• We devised an optimized R1CS for MT openings [2]:
� Slight change in the opening structure (copath + full path).
� up to 15% improvement for reasonable arities.
� Scales with tree arity and compactness of the CF.

0 0.5 1 1.5 2 2.5

·105

0

2,000

4,000

6,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon-Sponge (2:1)
Poseidon-Sponge (4:1)
Poseidon-Sponge (8:1)

Poseidon-PGV (2:1)
Poseidon-PGV (4:1)
Poseidon-PGV (8:1)

0 0.5 1 1.5 2 2.5

·105

0

500

1,000

1,500

2,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon2-Trunc (2:1)
Poseidon2-Trunc (4:1)
Poseidon2-Trunc (8:1)
Poseidon2-PGV (2:1)
Poseidon2-PGV (4:1)
Poseidon2-PGV (8:1)

20

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

• We devised an optimized R1CS for MT openings [2]:

� Slight change in the opening structure (copath + full path).
� up to 15% improvement for reasonable arities.
� Scales with tree arity and compactness of the CF.

0 0.5 1 1.5 2 2.5

·105

0

2,000

4,000

6,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon-Sponge (2:1)
Poseidon-Sponge (4:1)
Poseidon-Sponge (8:1)

Poseidon-PGV (2:1)
Poseidon-PGV (4:1)
Poseidon-PGV (8:1)

0 0.5 1 1.5 2 2.5

·105

0

500

1,000

1,500

2,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon2-Trunc (2:1)
Poseidon2-Trunc (4:1)
Poseidon2-Trunc (8:1)
Poseidon2-PGV (2:1)
Poseidon2-PGV (4:1)
Poseidon2-PGV (8:1)

20

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

• We devised an optimized R1CS for MT openings [2]:
� Slight change in the opening structure (copath + full path).

� up to 15% improvement for reasonable arities.
� Scales with tree arity and compactness of the CF.

0 0.5 1 1.5 2 2.5

·105

0

2,000

4,000

6,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon-Sponge (2:1)
Poseidon-Sponge (4:1)
Poseidon-Sponge (8:1)

Poseidon-PGV (2:1)
Poseidon-PGV (4:1)
Poseidon-PGV (8:1)

0 0.5 1 1.5 2 2.5

·105

0

500

1,000

1,500

2,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon2-Trunc (2:1)
Poseidon2-Trunc (4:1)
Poseidon2-Trunc (8:1)
Poseidon2-PGV (2:1)
Poseidon2-PGV (4:1)
Poseidon2-PGV (8:1)

20

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

• We devised an optimized R1CS for MT openings [2]:
� Slight change in the opening structure (copath + full path).
� up to 15% improvement for reasonable arities.

� Scales with tree arity and compactness of the CF.

0 0.5 1 1.5 2 2.5

·105

0

2,000

4,000

6,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon-Sponge (2:1)
Poseidon-Sponge (4:1)
Poseidon-Sponge (8:1)

Poseidon-PGV (2:1)
Poseidon-PGV (4:1)
Poseidon-PGV (8:1)

0 0.5 1 1.5 2 2.5

·105

0

500

1,000

1,500

2,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon2-Trunc (2:1)
Poseidon2-Trunc (4:1)
Poseidon2-Trunc (8:1)
Poseidon2-PGV (2:1)
Poseidon2-PGV (4:1)
Poseidon2-PGV (8:1)

20

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

• We devised an optimized R1CS for MT openings [2]:
� Slight change in the opening structure (copath + full path).
� up to 15% improvement for reasonable arities.
� Scales with tree arity and compactness of the CF.

0 0.5 1 1.5 2 2.5

·105

0

2,000

4,000

6,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon-Sponge (2:1)
Poseidon-Sponge (4:1)
Poseidon-Sponge (8:1)

Poseidon-PGV (2:1)
Poseidon-PGV (4:1)
Poseidon-PGV (8:1)

0 0.5 1 1.5 2 2.5

·105

0

500

1,000

1,500

2,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon2-Trunc (2:1)
Poseidon2-Trunc (4:1)
Poseidon2-Trunc (8:1)
Poseidon2-PGV (2:1)
Poseidon2-PGV (4:1)
Poseidon2-PGV (8:1)

20

Merkle Tree arity benchmarks

Binary Merkle trees are the standard choice: larger arities?

• We devised an optimized R1CS for MT openings [2]:
� Slight change in the opening structure (copath + full path).
� up to 15% improvement for reasonable arities.
� Scales with tree arity and compactness of the CF.

0 0.5 1 1.5 2 2.5

·105

0

2,000

4,000

6,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon-Sponge (2:1)
Poseidon-Sponge (4:1)
Poseidon-Sponge (8:1)

Poseidon-PGV (2:1)
Poseidon-PGV (4:1)
Poseidon-PGV (8:1)

0 0.5 1 1.5 2 2.5

·105

0

500

1,000

1,500

2,000

Message length [Fp elements]

Ti
m

e
[m

s]

Poseidon2-Trunc (2:1)
Poseidon2-Trunc (4:1)
Poseidon2-Trunc (8:1)
Poseidon2-PGV (2:1)
Poseidon2-PGV (4:1)
Poseidon2-PGV (8:1)

20

Roll credits

T he End
Thank you for your attention!

Any questions?

21

Bibliography i

Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab
Roy, and Tyge Tiessen.
Mimc: Efficient encryption and cryptographic hashing
with minimal multiplicative complexity.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology – ASIACRYPT 2016, pages 191–219, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

Elena Andreeva, Rishiraj Bhattacharyya, Arnab Roy, and
Stefano Trevisani.
On Efficient and Secure Compression Functions for
Arithmetization-Oriented Hashing.

22

Bibliography ii

In 2024 IEEE 37th Computer Security Foundations Symposium
(CSF), pages 1–16, Los Alamitos, CA, USA, Jul 2024. IEEE
Computer Society.

Tomer Ashur and Siemen Dhooghe.
Marvellous: a stark-friendly family of cryptographic
primitives.
Cryptology ePrint Archive, Paper 2018/1098, 2018.
https://eprint.iacr.org/2018/1098.

23

https://eprint.iacr.org/2018/1098

Bibliography iii

Augustin Bariant, Aurélien Boeuf, Axel Lemoine,
Irati Manterola Ayala, Morten Øygarden, Léo Perrin, and
Håvard Raddum.
The algebraic freelunch efficient gröbner basis attacks
against arithmetization-oriented primitives.
Cryptology ePrint Archive, Paper 2024/347, 2024.
https://eprint.iacr.org/2024/347.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael
Riabzev.
Fast Reed-Solomon Interactive Oracle Proofs of
Proximity.
In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,
and Donald Sannella, editors, 45th International Colloquium

24

https://eprint.iacr.org/2024/347

Bibliography iv

on Automata, Languages, and Programming (ICALP 2018),
volume 107 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 14:1–14:17, Dagstuhl, Germany, 2018. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche.
Sponge functions.
In ECRYPT hash workshop, volume 2007, 2007.

25

Bibliography v

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche.
On the indifferentiability of the sponge construction.
In Nigel Smart, editor, Advances in Cryptology –
EUROCRYPT 2008, pages 181–197, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena
Andreeva, and Bart Preneel.
Let’s go eevee! a friendly and suitable family of aead
modes for iot-to-cloud secure computation.
In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’23, pages

26

Bibliography vi

2546–2560, New York, NY, USA, 2023. Association for
Computing Machinery.

John Black, Phillip Rogaway, and Thomas Shrimpton.
Black-box analysis of the block-cipher-based
hash-function constructions from pgv.
In Moti Yung, editor, Advances in Cryptology — CRYPTO
2002, pages 320–335, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

Joppe W. Bos and Peter L. Montgomery.
Montgomery arithmetic from a software perspective.
Cryptology ePrint Archive, Paper 2017/1057, 2017.
https://eprint.iacr.org/2017/1057.

27

https://eprint.iacr.org/2017/1057

Bibliography vii

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin,
Robin Salen, Vesselin Velichkov, and Danny Willems.
New design techniques for efficient
arithmetization-oriented hash functions: Anemoi
permutations and Jive compression mode.
In Helena Handschuh and Anna Lysyanskaya, editors,
Advances in Cryptology – CRYPTO 2023, pages 507–539,
Cham, 2023. Springer Nature Switzerland.

Alessandro Chiesa, Dev Ojha, and Nicholas Spooner.
Fractal: Post-quantum and transparent recursive proofs
from holography.
Cryptology ePrint Archive, Paper 2019/1076, 2019.
https://eprint.iacr.org/2019/1076.

28

https://eprint.iacr.org/2019/1076

Bibliography viii

Orr Dunkelman and Nathan Keller.
The effects of the omission of last round’s mixcolumns
on aes.
Information Processing Letters, 110(8):304–308, 2010.

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.
Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Paper 2019/953, 2019.
https://eprint.iacr.org/2019/953.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989.

29

https://eprint.iacr.org/2019/953

Bibliography ix

Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus
Schofnegger, Roman Walch, and Qingju Wang.
Horst meets fluid-spn: Griffin for zero-knowledge
applications.
Cryptology ePrint Archive, Paper 2022/403, 2022.
https://eprint.iacr.org/2022/403.

Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger,
Christian Rechberger, Markus Schofnegger, and Roman
Walch.
Hash functions monolith for zk applications: May the
speed of sha-3 be with you.
Cryptology ePrint Archive, Paper 2023/1025, 2023.
https://eprint.iacr.org/2023/1025.

30

https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2023/1025

Bibliography x

Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger,
Arnab Roy, and Markus Schofnegger.
Poseidon: A new hash function for Zero-Knowledge
proof systems.
In 30th USENIX Security Symposium (USENIX Security 21),
pages 519–535. USENIX Association, aug 2021.

Lorenzo Grassi, Dmitry Khovratovich, and Markus
Schofnegger.
Poseidon2: A faster version of the poseidon hash
function.
Cryptology ePrint Archive, Paper 2023/323, 2023.
https://eprint.iacr.org/2023/323.

31

https://eprint.iacr.org/2023/323

Bibliography xi

Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger,
Dragos Rotaru, and Markus Schofnegger.
On a generalization of substitution-permutation
networks: The hades design strategy.
Cryptology ePrint Archive, Paper 2019/1107, 2019.
https://eprint.iacr.org/2019/1107.

Jens Groth.
On the size of pairing-based non-interactive arguments.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
in Cryptology – EUROCRYPT 2016, pages 305–326, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

32

https://eprint.iacr.org/2019/1107

Bibliography xii

Dmitry Khovratovich, Mario Marhuenda Beltrán, and Bart
Mennink.
Generic security of the safe api and its applications.
In Jian Guo and Ron Steinfeld, editors, Advances in
Cryptology – ASIACRYPT 2023, pages 301–327, Singapore,
2023. Springer Nature Singapore.

Katharina Koschatko, Reinhard Lüftenegger, and Christian
Rechberger.
Exploring the six worlds of gröbner basis cryptanalysis:
Application to anemoi.
IACR Transactions on Symmetric Cryptology,
2024(4):138–190, Dec. 2024.

33

Bibliography xiii

Ralph Charles Merkle.
Secrecy, Authentication, and Public Key Systems.
PhD thesis, Stanford University, Stanford, CA, USA, 1979.
AAI8001972.

Bart Preneel, René Govaerts, and Joos Vandewalle.
Hash functions based on block ciphers: A synthetic
approach.
In Advances in Cryptology - CRYPTO ’93, 13th Annual
International Cryptology Conference, Santa Barbara,
California, USA, August 22-26, 1993, Proceedings, volume 773
of Lecture Notes in Computer Science, pages 368–378.
Springer, 1993.

34

Bibliography xiv

Arnab Roy and Matthias Johann Steiner.
Generalized triangular dynamical system: An algebraic
system for constructing cryptographic permutations over
finite fields.
Cryptology ePrint Archive, Paper 2024/1316, 2024.

Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe.
Rescue-prime: a standard specification (sok).
Cryptology ePrint Archive, Paper 2020/1143, 2020.
https://eprint.iacr.org/2020/1143.

35

https://eprint.iacr.org/2020/1143

Bibliography xv

Polygon Zero Team.
Plonky2: Fast recursive arguments with plonk and fri,
September 2022.
https://github.com/0xPolygonZero/plonky2/blob/
main/plonky2/plonky2.pdf.

36

https://github.com/0xPolygonZero/plonky2/blob/main/plonky2/plonky2.pdf
https://github.com/0xPolygonZero/plonky2/blob/main/plonky2/plonky2.pdf

	Verifiable Computation, Blockchains, and ZK-SNARKs
	Flexible AO Compression Modes Joint work E. Andreeva, R. Bhattacharyya, A. Roy
	Security Results
	Experiments

