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 Motivation

Why a new hash function?

Cost of proving related to algebraic description
Traditional hashes have complex representations
Tailored designs improve many applications

Focus on large primes

Used in pairing-based ZK protocols
Small proofs, fast verification
Efficiently used on-chain
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) Applications for Large Primes

Generic Merkle tree proofs

Prove coin ownership
. . . or in general, set membership

Provable randomness

Make proof non-interactive via Fiat–Shamir
Prove correct derivation of challenges/randomness

Many more use cases

Authenticated and verifiable encryption
. . .
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◎ Design Strategy

What do we want:

Improve hashing performance for
big prime fields.

Make design as simple as possible to
minimize attack vectors.

Use lookups to increase the
algebraic degree.
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◎ Design Strategy

What do we want:

Improve hashing performance for
big prime fields.

Make design as simple as possible to
minimize attack vectors.

Use lookups to increase the
algebraic degree.

How we achieve it:

Feistel structure instead of SPN.

Feistel cipher versus SP network [CBP06, Fig. 4]
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◎ Design Strategy

What do we want:

Improve hashing performance for
big prime fields.

Make design as simple as possible to
minimize attack vectors.

Use lookups to increase the
algebraic degree.

How we achieve it:

Non-invertible S-Boxes and Squarings.
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◎ Design Strategy

What do we want:

Improve hashing performance for
big prime fields.

Make design as simple as possible to
minimize attack vectors.

Use lookups to increase the
algebraic degree.

How we achieve it:

Account for Montgomery reduction.
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◎ Design Strategy

What do we want:

Improve hashing performance for
big prime fields.

Make design as simple as possible to
minimize attack vectors.

Use lookups to increase the
algebraic degree.

How we achieve it:

Use simple 8-bit lookup tables.
(cf. Monolith [GKL+24])

S-box combined with circular shift.
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� Skyscraper Design: Overview

xL xR

yL yR

S1 ◦ S0

B3 ◦ B2

S5 ◦ S4

B7 ◦ B6

S9 ◦ S8

Square operation Si

Non-invertible x2

Good statistical properties
Speed-up via Montgomery

Bars operation Bi

Non-invertible S-Box B′

Applicable to any prime
High algebraic degree
Speed-up via efficient bit
operations

x2/σ + γi

x2/σ + γi+1

⊞

⊞

B′(x) + γi

B′(x) + γi+1

⊞

⊞
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� Skyscraper Design: Wide-State Dilemma

Question: Feistel takes only two inputs. How to "increase statesize"?
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� Skyscraper Design: Wide-State Dilemma

Question: Feistel takes only two inputs. How to "increase statesize"?

 Switch to extension field Fpn

Fpn ≡ Zp[X]/G(x), where G is an irreducible
polynomial of degree n

Field element x ∈ Fpn can be interpreted as
element of Fnp

x0+x1 ·X+ · · ·+xn−1 ·Xn−1 ≡ (x0, x1, . . . , xn−1)

Bar Sq
Fp 8 14
Fp2 12 52
Fp3 20 128

Table: Runtime [ns]
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� Skyscraper Design: S-Box component B′

Examples: B′ : Fpn → Fpn for p = 28657 (15-bit prime)

n = 1

17cd

17

T
d3

cd

T
0e

d30e ≡ 631d
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 Performance Comparison for BN254

Hash Function x86 ZK
Skyscraper 142 1 398

RC 1 510 5 670
POSEIDON 11 324 1 200
POSEIDON2 5 233 1 200
Rescue-Prime 230 950 630
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Area-degree product = size of witness matrix × max. degree of polynomial that encodes a gate

8 / 23



 Security Issues and Update

What happened:

Rebound attack by Antoine
Bak [Bak25]

Attack on 9 round version

No security margin

Skyscraper update:

Increase number of Rounds

Additional Squares impact native
performance

Additional Bars impact ZKP performance
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Potential extensions:

xL xR

yL yR

S2 ◦ S1 ◦ S0

S7 ◦ S6 ◦ S5

S12 ◦ S11 ◦ S10

B4 ◦ B3

B9 ◦ B8

xL xR

yL yR

S1 ◦ S0

S2 ◦ S1

S7 ◦ S6

S11 ◦ S10

S13 ◦ S12

B5 ◦ B4

B9 ◦ B8

xL xR

yL yR

S1 ◦ S0

B3 ◦ B2

S5 ◦ S4

B7 ◦ B6

S9 ◦ S8

B11 ◦ B10

S13 ◦ S12
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A Native performance for hashing over Fp
Message

Hash Function 500 bit 1 Mbit

SHA-256 1 1
Rescue-Prime 5610 10 541
POSEIDON 197 561
POSEIDON2 116 277
Reinforced Concrete 33 72
Monolith-64 2.9 1.3

Skyscraper Fp 3.2 (4.1) 15.1 (19.6)
Fp2 8.2 (12.8) 9.6 (15.3)

Table: Native performance for hashing
compared to SHA-256.

Sq Bar
Fp 9.6% 4.4%
Fp2 14.7% 2.9%
Fp3 15.2% 2.1%

Table: Cost of Round functions
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9 Conclusion

New hash function Skyscraper

Efficient in plain and in proof systems for large primes
Plain performance comparable to SHA-3

Feistel design strategy

Allows for non-invertible components
Remove affine layer (costly for large state or large round number)
Simple design (no growing state) due to extension field usage

Generic Bar construction

Not fixed to specific prime
High algebraic degree
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Algebraic Cryptanalysis: S-Box component B′

x ∈ Fp

w0

T
f(wm−1)

...

T
f(w0)

wm−2

T
...

wm−1

T
f(wm−2)

y ∈ Fp

Range constraints (wi fits into s bits):

0 =
2s−1∏
i=0

(wk − i) ∀ 0 ≤ k < m

Composition constraint:

x =
m−1∑
k=0

2s(m−1−k) · wk

Rotr, Sbox, and Comp:

y =
m−1∑
k=0

2s(m−1−k) · f(wk−r mod m)
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Cryptanalysis (GB) results for Skyscraper

Instance Alg. model Gröbner basis computation (step 1)
p m N R nv ne dmax F4 [s] mem. [MB] dreg Degrees GBDRL #Sol.

37 2 1 6 7 9 16 1 33 16 2-2-2-1-1-1-1-1 3
109 2 1 6 7 9 16 2 79 16 1-1-1-1-1-1-1 1
163 2 1 6 7 9 16 3 146 16 1-1-1-1-1-1-1 1
191 2 1 6 7 9 16 4 149 16 1-1-1-1-1-1-1 1
587 3 1 6 9 11 16 243 3661 17 1-1-1-1-1-1-1-1-1 1

1237 3 1 6 9 11 16 7550 31871 18 2-1-1-1-1-1-1-1-1 2
1361 3 1 6 9 11 16 18974 56732 18 1-1-1-1-1-1-1-1-1 1
1399 3 1 6 9 11 16 18912 56828 18 1-1-1-1-1-1-1-1-1 1
2297 3 1 6 9 11 16 51103 194271 20 1-1-1-1-1-1-1-1-1 1
2953 3 1 6 9 11 16 123706 385124 22 1-1-1-1-1-1-1-1-1 1

Table: GB attack against Skyscraper-CICO for a chunk size of s = 4, R rounds (2 squarings, 2 bars).
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Cryptanalysis (GB) results for Skyscraper

Instance Alg. model Gröbner basis computation (step 1)
p m N R nv ne dmax F4 [s] mem. [MB] dreg Degrees GBDRL #Sol.

10973 2 1 5 4 5 256 103 1665 256 1-1-1-1 1
12277 2 1 5 4 5 256 207 2033 256 1-1-1-1 1
12809 2 1 5 4 5 256 574 3660 256 2-1-1-1 2
17033 2 1 5 4 5 256 483 3407 256 1-1-1-1 1
25057 2 1 5 4 5 256 2604 11395 256 2-2-2-2-2-2-1 4
28837 2 1 5 4 5 256 1348 7956 256 1-1-1-1 1
45943 2 1 5 4 5 256 3282 17224 256 1-1-1-1 1
51647 2 1 5 4 5 256 4210 21075 256 1-1-1-1 1
52541 2 1 5 4 5 256 4312 21810 256 1-1-1-1 1

Table: GB attack against Skyscraper-CICO for a chunk size of s = 8, R rounds (2 squarings, 1 bar).
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What about other lookup-based primitives?

Tip5
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Some cryptanalysis (GB) results for Monolith

Alg. model Gröbner basis Basis conversion Elimination
CICO model R nv ne dmax F4 [s] dreg FGLM [s] dI ELIM [s] #Sol.

(?, ?, 0) 7→ (0, ?, ?)
1 8 8 16 0.69 30 2.28 512 0.33 246
2 12 13 16 7292.55 32 0.89 296 0.32 296

(?, 0, 0) 7→ (0, ?, ?)
1 7 8 16 0.05 18 0.0 4 0.0 4
2 11 13 16 54.23 30 0.0 1 0.0 1
3 15 18 16 11031.2 32 0.0 1 0.0 1

Table: GB attack against Monolith-CICO over Fp for p = 28 − 24 + 1 for a chunk size of s = 4, state
size t = 3, and u = 1 decomposition S-Boxes per round.
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Observations and Questions

Security based only on the first step in GB attack?

Only low degrees after GB step
Low quotient space dimension dI

But: dreg does not grow (fast)

Security from large number of variables in model
Better to have larger primes (= more chunks)

Place for improvement

Use dedicated monomial order to skip first step?
Better way of modeling the lookup table?
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A Plain Performance

BN254 Goldilocks [GKL+24]
Hashing algorithm (t,deg.) Rounds Time [ns] (t,deg.) Rounds Time [ns]

POSEIDON (3,5) 64 (4+56+4) 11 324 (8,7) 30 (4+22+4) 1 898
POSEIDON2 (3,5) 64 (4+56+4) 5 233 (8,7) 30 (4+22+4) 1 292
Rescue-Prime (3,5) 14 230 950 (8,7) 8 12 128

Reinforced Concrete (3,5) 7 (3+1+3) 1 510
Skyscraper (2,2) 10 (6 Sq., 4 B) 142
Monolith (8,2) 6 130

Table: Native performance of compressing 512 bits (2-1 compression) over Ftp, where t denotes the statesize. For
POSEIDON,POSEIDON2, Rescue-Prime, and Reinforced Concrete, "deg." denotes the non-linear permutation degree, that
is, the smallest positive integer d such that gcd(d, p− 1) = 1 (e.g., d = 5 for BN254 and d = 7 for Goldilocks). In Monolith
and Skyscraper, (non-invertible) squaring is employed as part of a Feistel construction.

22 / 23



! Plonkish Performance

Component Witnesses Constraints (deg.) Lookups Area-degree product

n = 1

Double squaring 3 3 (2) 0 –
All squarings 9 9 (2) 0 –

Bars 56 10 (1) 32 –
All Bars 224 40 (1) 128 –

Skyscraper 233 49 (1, 2) 128 1398

Reinforced Concrete 378 24 (1, 3, d) 267 5670
POSEIDON, POSEIDON2 80 80 (d) 0 1200
Rescue-Prime 42 42 (d) 0 630

Table: Circuit performance of all components of Skyscraper, where we assume the BN254 setting. This also
includes a comparison with Reinforced Concrete, POSEIDON, POSEIDON2, and Rescue-Prime, where d is the
smallest positive integer such that gcd(d, p− 1) = 1 (e.g., d = 5 for BN254).
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