

Skyscraper: Super Fast Hash for Big Primes

Clémence Bouvier Lorenzo Grassi Dmitry Khovratovich Katharina Koschatko Christian Rechberger Fabian Schmid Markus Schofnegger

> January 26, 2025

> www.isec.tugraz.at

Wotivation

- Why a new hash function?
 - Cost of proving related to algebraic description
 - Traditional hashes have complex representations
 - Tailored designs improve many applications
- Focus on large primes
 - Used in pairing-based ZK protocols
 - Small proofs, fast verification
 - Efficiently used on-chain

Wotivation

- Why a new hash function?
 - Cost of proving related to algebraic description
 - Traditional hashes have complex representations
 - Tailored designs improve many applications
- Focus on large primes
 - Used in pairing-based ZK protocols
 - Small proofs, fast verification
 - Efficiently used *on-chain*

III Applications for Large Primes

- Generic Merkle tree proofs
 - Prove coin ownership
 - ... or in general, set membership
- Provable randomness
 - Make proof non-interactive via Fiat–Shamir
 - Prove correct derivation of challenges/randomness
- Many more use cases
 - Authenticated and verifiable encryption
 -

Applications for Large Primes

- Generic Merkle tree proofs
 - Prove coin ownership
 - ... or in general, set membership
- Provable randomness
 - Make proof non-interactive via Fiat–Shamir
 - Prove correct derivation of challenges/randomness
- Many more use cases
 - Authenticated and verifiable encryption
 -

Applications for Large Primes

- Generic Merkle tree proofs
 - Prove coin ownership
 - ... or in general, set membership
- Provable randomness
 - Make proof non-interactive via Fiat–Shamir
 - Prove correct derivation of challenges/randomness
- Many more use cases
 - Authenticated and verifiable encryption
 - • •

What do we want:

- Improve hashing performance for big prime fields.
- Make design as simple as possible to minimize attack vectors.
- Use lookups to increase the algebraic degree.

What do we want:

- Improve hashing performance for big prime fields.
- Make design as simple as possible to minimize attack vectors.
- Use lookups to increase the algebraic degree.

What do we want:

- Improve hashing performance for big prime fields.
- Make design as simple as possible to minimize attack vectors.
- Use lookups to increase the algebraic degree.

What do we want:

- Improve hashing performance for big prime fields.
- Make design as simple as possible to minimize attack vectors.
- Use lookups to increase the algebraic degree.

How we achieve it:

Feistel structure instead of SPN.

Feistel cipher versus SP network [CBP06, Fig. 4]

What do we want:

- Improve hashing performance for big prime fields.
- Make design as simple as possible to minimize attack vectors.
- Use lookups to increase the algebraic degree.

How we achieve it:

Non-invertible S-Boxes and Squarings.

What do we want:

- Improve hashing performance for big prime fields.
- Make design as simple as possible to minimize attack vectors.
- Use lookups to increase the algebraic degree.

How we achieve it:

Account for Montgomery reduction.

What do we want:

- Improve hashing performance for big prime fields.
- Make design as simple as possible to minimize attack vectors.
- Use lookups to increase the algebraic degree.

How we achieve it:

- Use simple 8-bit lookup tables. (cf. Monolith [GKL+24])
- S-box combined with circular shift.

Skyscraper Design: Overview

- Square operation S_i
 - Non-invertible *x*²
 - Good statistical properties
 - Speed-up via Montgomery
- Bars operation B_i
 - Non-invertible S-Box B'
 - Applicable to any prime
 - High algebraic degree
 - Speed-up via efficient bit operations

Skyscraper Design: Overview

- Square operation S_i
 - Non-invertible x²
 - Good statistical properties
 - Speed-up via Montgomery
- Bars operation B_i
 - Non-invertible S-Box B'
 - Applicable to any prime
 - High algebraic degree
 - Speed-up via efficient bit operations

Skyscraper Design: Overview

- Square operation S_i
 - Non-invertible x²
 - Good statistical properties
 - Speed-up via Montgomery
- Bars operation B_i
 - Non-invertible S-Box B'
 - Applicable to any prime
 - High algebraic degree
 - Speed-up via efficient bit operations

Skyscraper Design: Wide-State Dilemma

Question: Feistel takes only two inputs. How to "increase statesize"?

Skyscraper Design: Wide-State Dilemma

Question: Feistel takes only two inputs. How to "increase statesize"?

 $\mathbf{\mathfrak{P}}$ Switch to extension field \mathbb{F}_{p^n}

Skyscraper Design: Wide-State Dilemma

Question: Feistel takes only two inputs. How to "increase statesize"?

\mathbb{P} Switch to extension field \mathbb{F}_{p^n}

- $\mathbb{F}_{p^n} \equiv \mathbb{Z}_p[X]/G(x)$, where G is an irreducible polynomial of degree *n*
- Field element x ∈ 𝔽_{pⁿ} can be interpreted as element of 𝔽ⁿ_p

$$x_0 + x_1 \cdot X + \cdots + x_{n-1} \cdot X^{n-1} \equiv (x_0, x_1, \dots, x_{n-1})$$

Table: Runtime [ns]

Skyscraper Design: S-Box component B'

Examples: $\mathsf{B}':\mathbb{F}_{p^n}\to\mathbb{F}_{p^n}$ for p=28657 (15-bit prime)

Skyscraper Design: S-Box component B'

Examples: $\mathsf{B}':\mathbb{F}_{p^n} o \mathbb{F}_{p^n}$ for p= 28657 (15-bit prime)

Skyscraper Design: S-Box component B'

Examples: $\mathsf{B}':\mathbb{F}_{p^n}\to\mathbb{F}_{p^n}$ for p= 28657 (15-bit prime)

$\Delta \Delta$ Performance Comparison for BN254

Plonkish Performance (Area-degree product)

Area-degree product = size of witness matrix \times max. degree of polynomial that encodes a gate

▲ Security Issues and Update

What happened:

- Rebound attack by Antoine Bak [Bak25]
- Attack on 9 round version
- No security margin

Skyscraper update:

- Increase number of Rounds
- Additional Squares impact native performance
- Additional Bars impact ZKP performance

▲ Security Issues and Update

What happened:

- Rebound attack by Antoine Bak [Bak25]
- Attack on 9 round version
- No security margin

Skyscraper update:

- Increase number of Rounds
- Additional Squares impact native performance
- Additional Bars impact ZKP performance

Potential extensions:

41 Native performance for hashing over \mathbb{F}_p

	Mes	sage
Hash Function	500 bit	1 Mbit
SHA-256	1	1
<i>Rescue</i> -Prime	5610	10 541
Poseidon	197	561
Poseidon2	116	277
Reinforced Concrete	33	72
Monolith-64	2.9	1.3
Skyecropor \mathbb{F}_p	3.2 (4.1)	15.1 (19.6)
\mathbb{F}_{p^2}	8.2 <i>(12.8)</i>	9.6 <i>(15.3)</i>

	Sq	Bar
\mathbb{F}_{p}	9.6%	4.4%
\mathbb{F}_{p^2}	14.7%	2.9%
\mathbb{F}_{p^3}	15.2%	2.1%

Table: Cost of Round functions

Table: Native performance for hashing compared to SHA-256.

E Conclusion

- New hash function Skyscraper
 - Efficient in plain and in proof systems for large primes
 - Plain performance comparable to SHA-3
- Feistel design strategy
 - Allows for non-invertible components
 - Remove affine layer (costly for large state or large round number)
 - Simple design (no growing state) due to extension field usage
- Generic Bar construction
 - Not fixed to specific prime
 - High algebraic degree

E Conclusion

- New hash function Skyscraper
 - Efficient in plain and in proof systems for large primes
 - Plain performance comparable to SHA-3
- Feistel design strategy
 - Allows for non-invertible components
 - Remove affine layer (costly for large state or large round number)
 - Simple design (no growing state) due to extension field usage
- Generic Bar construction
 - Not fixed to specific prime
 - High algebraic degree

E Conclusion

- New hash function Skyscraper
 - Efficient in plain and in proof systems for large primes
 - Plain performance comparable to SHA-3
- Feistel design strategy
 - Allows for non-invertible components
 - Remove affine layer (costly for large state or large round number)
 - Simple design (no growing state) due to extension field usage
- Generic Bar construction
 - Not fixed to specific prime
 - High algebraic degree

Algebraic Cryptanalysis: S-Box component B'

 $x \in \mathbb{F}_p$ $W_{m-2} W_{m-1}$ Wo $f(w_{m-1}) f(w_0)$... $f(w_{m-2})$ $y \in \mathbb{F}_p$

Range constraints (*w_i* fits into *s* bits):

$$0 = \prod_{i=0}^{2^s-1} (w_k - i) \quad \forall \ 0 \le k < m$$

Composition constraint:

$$x = \sum_{k=0}^{m-1} 2^{s(m-1-k)} \cdot w_k$$

Rot_r, Sbox, and Comp:

$$y = \sum_{k=0}^{m-1} 2^{s(m-1-k)} \cdot f(w_{k-r \mod m})$$

Algebraic Cryptanalysis: S-Box component B'

Range constraints (*w_i* fits into *s* bits):

$$0 = \prod_{i=0}^{2^s-1} (w_k - i) \quad \forall \ 0 \le k < m$$

Composition constraint:

$$x = \sum_{k=0}^{m-1} 2^{s(m-1-k)} \cdot w_k$$

Rot_r, Sbox, and Comp:

$$y = \sum_{k=0}^{m-1} 2^{s(m-1-k)} \cdot f(w_{k-r \mod m})$$

Algebraic Cryptanalysis: S-Box component B'

Range constraints (*w_i* fits into *s* bits):

$$0 = \prod_{i=0}^{2^s-1} (w_k - i) \quad \forall \ 0 \le k < m$$

Composition constraint:

$$x = \sum_{k=0}^{m-1} 2^{s(m-1-k)} \cdot w_k$$

Rot_r, Sbox, and Comp:

$$y = \sum_{k=0}^{m-1} 2^{s(m-1-k)} \cdot f(w_{k-r \mod m})$$

Cryptanalysis (GB) results for Skyscraper

In	istan	ce		Α	lg. m	odel	Gröbner basis computation (step 1)				
р	m	Ν	R	n_v	n _e	$d_{ m max}$	F4 [s]	mem. [MB]	$d_{ m reg}$	Degrees GB _{DRL}	#Sol.
37	2	1	6	7	9	16	1	33	16	2-2-2-1-1-1-1	3
109	2	1	6	7	9	16	2	79	16	1-1-1-1-1-1	1
163	2	1	6	7	9	16	3	146	16	1-1-1-1-1-1	1
191	2	1	6	7	9	16	4	149	16	1-1-1-1-1-1	1
587	3	1	6	9	11	16	243	3661	17	1-1-1-1-1-1-1-1	1
1237	3	1	6	9	11	16	7550	31871	18	2-1-1-1-1-1-1-1	2
1361	3	1	6	9	11	16	18974	56732	18	1-1-1-1-1-1-1-1	1
1399	3	1	6	9	11	16	18912	56828	18	1-1-1-1-1-1-1-1	1
2297	3	1	6	9	11	16	51103	194271	20	1-1-1-1-1-1-1-1	1
2953	3	1	6	9	11	16	123706	385124	22	1-1-1-1-1-1-1-1	1

Table: GB attack against Skyscraper-CICO for a chunk size of s = 4, R rounds (2 squarings, 2 bars).

Cryptanalysis (GB) results for Skyscraper

In	stan	ce		Alg. model			Gröbner basis computation (step 1)				
р	m	Ν	R	n_v	n _e	$d_{ m max}$	F4 [s]	mem. [MB]	$d_{ m reg}$	$Degrees\ GB_{DRL}$	#Sol.
10973	2	1	5	4	5	256	103	1665	256	1-1-1-1	1
12277	2	1	5	4	5	256	207	2033	256	1-1-1-1	1
12809	2	1	5	4	5	256	574	3660	256	2-1-1-1	2
17033	2	1	5	4	5	256	483	3407	256	1-1-1-1	1
25057	2	1	5	4	5	256	2604	11395	256	2-2-2-2-2-1	4
28837	2	1	5	4	5	256	1348	7956	256	1-1-1-1	1
45943	2	1	5	4	5	256	3282	17224	256	1-1-1-1	1
51647	2	1	5	4	5	256	4210	21075	256	1-1-1-1	1
52541	2	1	5	4	5	256	4312	21810	256	1-1-1-1	1

Table: GB attack against Skyscraper-CICO for a chunk size of s = 8, R rounds (2 squarings, 1 bar).

What about other lookup-based primitives?

Some cryptanalysis (GB) results for Monolith

	Alg. model			Gröbner basis		Basis conversion		Elimination		
CICO model	R	n _v	n _e	d_{\max}	F4 [s]	$d_{ m reg}$	FGLM [s]	$d_{\mathcal{I}}$	ELIM [s]	#Sol.
$(?,?,0)\mapsto (0,?,?)$	1	8	8	16	0.69	30	2.28	512	0.33	246
	2	12	13	16	7292.55	32	0.89	296	0.32	296
	1	7	8	16	0.05	18	0.0	4	0.0	4
$(?,0,0)\mapsto (0,?,?)$	2	11	13	16	54.23	30	0.0	1	0.0	1
	3	15	18	16	11031.2	32	0.0	1	0.0	1

Table: GB attack against Monolith-CICO over \mathbb{F}_p for $p = 2^8 - 2^4 + 1$ for a chunk size of s = 4, state size t = 3, and u = 1 decomposition S-Boxes per round.

Observations and Questions

- Security based only on the first step in GB attack?
 - Only low degrees after GB step
 - Low quotient space dimension $d_{\mathcal{I}}$
- But: d_{reg} does not grow (fast)
 - Security from large number of variables in model
 - Better to have larger primes (= more chunks)
- Place for improvement
 - Use dedicated monomial order to skip first step?
 - Better way of modeling the lookup table?

Observations and Questions

- Security based only on the first step in GB attack?
 - Only low degrees after GB step
 - Low quotient space dimension $d_{\mathcal{I}}$
- But: d_{reg} does not grow (fast)
 - Security from large number of variables in model
 - Better to have larger primes (= more chunks)
- Place for improvement
 - Use dedicated monomial order to skip first step?
 - Better way of modeling the lookup table?

Observations and Questions

- Security based only on the first step in GB attack?
 - Only low degrees after GB step
 - Low quotient space dimension $d_{\mathcal{I}}$
- But: d_{reg} does not grow (fast)
 - Security from large number of variables in model
 - Better to have larger primes (= more chunks)
- Place for improvement
 - Use dedicated monomial order to skip first step?
 - Better way of modeling the lookup table?

Skyscraper: Super Fast Hash for Big Primes

Clémence Bouvier Lorenzo Grassi Dmitry Khovratovich Katharina Koschatko Christian Rechberger Fabian Schmid Markus Schofnegger

> January 26, 2025

> www.isec.tugraz.at

Bibliography I

- [AAE+20] A. Aly, T. Ashur, Eli Ben-Sasson, S. Dhooghe, and A. Szepieniec. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. *IACR Trans. Symmetric Cryptol.* 2020.3 (2020), pp. 1–45.
- [Bak25] A. Bak. A practical distinguisher on the full Skyscraper permutation. Cryptology ePrint Archive, Paper 2025/102. 2025 (cit. on pp. 24, 25).
- [CBP06] C. Cannière, A. Biryukov, and B. Preneel. An introduction to Block Cipher Cryptanalysis. Proceedings of the IEEE 94 (Mar. 2006), pp. 346–356. DOI: 10.1109/JPROC.2005.862300 (cit. on p. 10).
- [GKL+22] L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger, and R. Walch. Reinforced Concrete: A Fast Hash Function for Verifiable Computation. CCS 2022. ACM, 2022, pp. 1323–1335. DOI: 10.1145/3548606.3560686.

Bibliography II

- [GKL+24] L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger, and R. Walch. Monolith: Circuit-Friendly Hash Functions with New Nonlinear Layers for Fast and Constant-Time Implementations. *IACR Trans. Symmetric Cryptol.* 2024.3 (2024), pp. 44–83. DOI: 10.46586/T0SC.V2024.I3.44–83 (cit. on pp. 13, 44).
- [GKR+21] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. Poseidon: A New Hash Function for Zero-Knowledge Proof Systems. USENIX 2021. USENIX Association, 2021, pp. 519–535.
- [GKS23] L. Grassi, D. Khovratovich, and M. Schofnegger. Poseidon2: A Faster Version of the Poseidon Hash Function. AFRICACRYPT 2023. Vol. 14064. LNCS. Springer, 2023, pp. 177–203. DOI: 10.1007/978-3-031-37679-5_8.
- [SAD20] A. Szepieniec, T. Ashur, and S. Dhooghe. Rescue-Prime: a Standard Specification (SoK). Cryptology ePrint Archive, Report 2020/1143. https://ia.cr/2020/1143. 2020.

Plain Performance

		BN254		Goldilocks [GKL+24]			
Hashing algorithm	(t,deg.)	Rounds	Time [ns]	(t,deg.)	Rounds	Time [ns]	
Poseidon	(3,5)	64 (4+56+4)	11 324	(8,7)	30 (4+22+4)	1 898	
Poseidon2	(3,5)	64 (4+56+4)	5 233	(8,7)	30 (4+22+4)	1 292	
Rescue-Prime	(3,5)	14	230 950	(8,7)	8	12 128	
Reinforced Concrete	(3,5)	7 (3+1+3)	1 510				
Skyscraper	(2,2)	10 (6 Sq., 4 B)	142				
Monolith				(8,2)	6	130	

Table: Native performance of compressing 512 bits (2-1 compression) over \mathbb{F}_{p}^{t} , where t denotes the statesize. For POSEIDON, POSEIDON2, *Rescue*-Prime, and Reinforced Concrete, "deg." denotes the non-linear permutation degree, that is, the smallest positive integer d such that gcd(d, p - 1) = 1 (e.g., d = 5 for BN254 and d = 7 for Goldilocks). In Monolith and Skyscraper, (non-invertible) squaring is employed as part of a Feistel construction.

Plonkish Performance

Component	Witnesses	Constraints (deg.)	Lookups	Area-degree product	
		n = 1			
Double squaring	3	3 (2)	0	-	
All squarings	9	9 (2)	0		
Bars	56	10 (1)	32	-	
All Bars	224	40 (1)	128		
Skyscraper	233	49 (1, 2)	128	1398	
Reinforced Concrete	378	24 (1,3, <i>d</i>)	267	5670	
Poseidon, Poseidon2	80	80 (<i>d</i>)	0	1200	
<i>Rescue</i> -Prime	42	42 (<i>d</i>)	0	630	

Table: Circuit performance of all components of Skyscraper, where we assume the BN254 setting. This also includes a comparison with Reinforced Concrete, POSEIDON, POSEIDON2, and *Rescue*-Prime, where *d* is the smallest positive integer such that gcd(d, p - 1) = 1 (e.g., d = 5 for BN254).