Alternating moduli PRFs and their polynomial representations

Håvard Raddum 26.01.2025

Outline

- weak pseudo-random functions (wPRF)
- Constructions mixing linear functions over \mathbb{F}_2 and \mathbb{F}_3
- Polynomial representation of mappings
 - Impossibility result: is it sufficient?
- Ideas for further study

weak pseudorandom function (wPRF)

A mapping $F: \mathscr{K} \times$

 \mathscr{X} is the key space, \mathscr{X} is the input space and \mathscr{Y} is the output space

Property:

For fixed $k \in \mathcal{K}$, can not distinguish

where $g: \mathscr{X} \longrightarrow \mathscr{Y}$ is a random function,

the x_i are drawn uniformly at random from \mathcal{X} , and $s < 2^{\lambda}$

$$\mathscr{X} \longrightarrow \mathscr{Y}$$
 where

wPRFs from mixing \mathbb{F}_2 and \mathbb{F}_3

Main idea

Build wPRF by combining *linear* mappings over \mathbb{F}_2 and \mathbb{F}_3

- Simple design
- Very efficient for use in MPC (few communication rounds)

Generalization: mappings over \mathbb{F}_p and \mathbb{F}_q

Notation: elements and computations are red in \mathbb{F}_2 , and blue in \mathbb{F}_3

Gives high algebraic degree when expressed over a single field

DarkMatter (2018)

BIP+18 presents idea and first construction (single output)

 $\mathscr{X} = \mathbb{F}_2^n, \mathscr{K} = \mathbb{F}_2^{m \times n} \quad \mathscr{Y} = \mathbb{F}_3$

suggested (optimistic) parameters for λ -bit security: $n = m = 2\lambda$

TCC 2018, eprint 2018/1281

Special matrices

k is circulant matrix, given by top row

k is Toeplitz matrix,

given by top row and leftmost column

DarkMatter alternative constructions basic LPN variant multi output variant $\mathscr{X} = \mathbb{F}_2^n, \mathscr{K} = \mathbb{F}_2^n, \mathscr{Y} = \mathbb{F}_2$ $X_i \xrightarrow{\mathrm{Id}} X_i \qquad k_i \xrightarrow{\mathrm{Id}} k_i$ W_1 *y*₁ w_2 W_2 $w = x_1k_1 + x_2k_2 + \ldots + x_nk_n$ ld ← *y*₂ $\mathcal{W} \stackrel{\text{mod 2}}{\rightarrow} \mathcal{W}$ ٠ • • y_t W_m $y = x_1k_1 + x_2k_2 + \ldots + x_nk_n + w$

«LPN with error rate 1/3»

$$\mathscr{X} = \mathbb{F}_2^n, \mathscr{K} = \mathbb{F}_2^{m \times n} \quad \mathscr{Y} = \mathbb{F}_3^t$$

where $t \leq m - \lambda$

DGH+21 construction CRYPTO 2021, eprint 2021/885

multi output LPN variant

APRR24 construction CRYPTO 2024, eprint 2024/582

 $\mathscr{X} = \mathbb{F}_{2}^{n}, \mathscr{K} = \mathbb{F}_{2}^{n} \quad \mathscr{Y} = \mathbb{F}_{3}^{t}$

1-to-1 parameters: $n = 2\lambda, m = 7.06\lambda, t = 2\lambda/\log_2(3)$

many-to-1 parameters: $n = 4\lambda, m = 2\lambda, t = \lambda/\log_2(3)$

Cryptanalysis so far

- CCKK20 PKC 2020, eprint 2020/783
 - Attacks basic wPRF of BIP+18 with circulant matrix and basic LPN version
 - Exploits biases in the modular reductions
 - Parameters in original constructions must be increased
- MR24 eprint 2024/2055
 - Attacks 1-to-1 parameter set of APRR24 construction
 - Exploits collisions in output (mapping is not 1-to-1)
 - wPRF gives only $\lambda/2$ -bit security

Polynomial representations

On polynomial representation

- BIP+18 argues the mixed moduli wPRFs do not admit representation by lowdegree polynomials over a fixed field
- CCKK20 does not consider polynomial representations
- DGH+21 refers to BIP+18, and does not consider polynomial representation further
- APRR24 shows polynomial representation over F₃ that is surprisingly compact, but does not investigate further

BIP+18 argument

Smo87

 $MOD_{(s,p)}$ - outputs one iff the number of ones in the input is congruent to s mod p. $MOD_p = NOT(MOD_{\{0,p\}})$.

Theorem 2: Let p be a prime number and r is not a power of p then computing MOD, by depth k circuit with basic operations AND, OR, NOT and MOD_p requires $exp(O(n^{\frac{1}{2k}}))$ AND and OR gates.

Lemma 4.2 (Inapproximability by Low-Degree Polynomials). For n > 0 and d < n/2, let $B(n,d) = \frac{1}{2^n} \cdot \sum_{i=0}^{n/2-d-1} {n \choose i}$. Then, for all primes $p \neq q$, the function $\operatorname{map}_p: \{0,1\}^n \to \mathbb{Z}_q$ on *n*-bit inputs that maps $x \mapsto \sum_{i \in [n]} x_i \pmod{p}$ is B(n,d)-far from all degree-d polynomials over $\operatorname{GF}(q^{\ell})$ for all $\ell \geq 1$.

Inapproximability by Low-Degree Polynomials 4.2

Another necessary condition for a PRF family is that the family should be hard to approximate by low-degree polynomials. Specifically, assume there exists a degree-d multivariate polynomial

f over GF(2) such that $F_k(x) = f(x)$ for all $x \in \{0,1\}^n$. Then, given (sufficiently many) PRF evaluations $(x_i, F_k(x_i))$ on uniformly random values x_i , an adversary can set up a linear system where the unknowns corresponds to the coefficients of f. Since f has degree d, the resulting system has $N = \sum_{k=0}^{d} \binom{n}{k}$ variables. Thus, given $O(2^{d} \cdot N)$ random samples, the adversary can solve the linear system and recover the coefficients of f (and therefore, a complete description of F_k). We note that this attack still applies even if F_k is $1/O(2^d \cdot N)$ -close to a degree d polynomial. In this case, the solution to the system will be $1/O(2^d \cdot N)$ -close to F_k with constant probability (which still suffices to break pseudorandomness). Thus, for a candidate PRF family to be secure, the family should not admit a low-degree polynomial approximation.

In our setting, we are able to rule out low-degree polynomial approximations by appealing to the classic Razborov-Smolensky lower bounds for ACC⁰ [Raz87, Smo87], which essentially says that for distinct primes p and q, MOD_p gates cannot be computed in $ACC^0[q^{\ell}]$ for any $\ell \geq 1$. Translated to our setting, this essentially says that our "modulus-switching" mapping $map_p: \{0,1\}^n \to \mathbb{Z}_p$, which implements the mapping $x \mapsto \sum_{i \in [n]} x_i \pmod{p}$, is hard to approximate over $GF(q^{\ell})$ as long as $p \neq q$. We formalize this in the following lemma.

BIP+18 conjecture

Inapproximability by Low-Degree Rational Functions 4.3

Conjecture 4.3 (Inapproximability by Rational Functions). For any distinct primes $p \neq q$, any integer $\ell \geq 1$, and any d = o(n), there exists a constant $\alpha < 1$ such that the function $\operatorname{\mathsf{map}}_p: \{0,1\}^n \to \mathbb{Z}_p \text{ that maps } x \mapsto \sum_{i \in [n]} x_i \pmod{p} \text{ is } 1/(2^d \cdot N)^{\alpha} \text{-far from all degree-} d \text{ rational}$ functions over $GF(q^{\ell})$.

We believe that studying this conjecture is a natural and well-motivated complexity problem. Proving or disproving this conjecture would lead to a better understanding of ACC^{0} .

Motivates further study on polynomial approximations of mod2/mod3-constructions

The low-degree polynomial approximation attack described in Section 4.2 generalizes to the setting where the PRF F_k can be approximated (sufficiently well) by a low-degree rational function. For instance, suppose there exist multivariate polynomials f, g over GF(2) of degree at most d such that $f(x) = F_k(x) \cdot g(x)$ for all $x \in \{0,1\}^n$. Then, a similar attack can be mounted, as any random

APRR24 observation

BIP+18 only considers approximating MOD_p on inputs from $\{0,1\}^n$

 $\begin{vmatrix} k_1 & k_2 & \cdots & k_{n-1} & k_n \\ k_n & k_1 & \cdots & k_{n-2} & k_{n-1} \end{vmatrix} x_1$ X_{2} = $k_{2} k_{3}$

Polynomial approximation over \mathbb{F}_3 ?

APRR24 observation

- $(\mathbb{F}_2, +) \cong (\mathbb{F}_3^*, \times)$

 $x_1k_1 + x_2k_2 + \dots + x_nk_n \cong \overline{k_i^{x_i}}$ i=1

 $x \mapsto x+1$ $x_1k_1 + x_2k_2 + \dots + x_nk_n \cong (k_i + 1)^{x_i}$ i=1

Linear variable change $k_i + 1 = k_i$

APRR24 observation

$$y = [11 \cdots 1] \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ \vdots \\ w_n \end{bmatrix} \stackrel{\mathsf{Id}}{\leftarrow} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ \vdots \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} k_1 \ k_2 \ \cdots \ k_{n-1} \ k_n \\ k_n \ k_1 \ \cdots \ k_{n-2} \ k_{n-1} \\ \vdots \\ \vdots \\ \vdots \\ k_2 \ k_3 \ \cdots \ k_n \ k_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$$

Basic wPRF can be described by polynomial over \mathbb{F}_3 of degree $\approx n/2$, but only *m* terms

system of sparse multilinear polynomial equations for their constructions.

would correspond to interpolating sparse multilinear polynomials. While the connection between symmetric-key primitives (based on the alternating-moduli paradigm) and the hardness of interpolating sparse multilinear polynomials has already been observed by [BIP⁺18], neither of [BIP⁺18] or [DGH⁺21] considered the dual problem of solving a

Further observations

The set of terms $\{w_1, ..., w_n\}$ for xand $\{w'_1, ..., w'_n\}$ for x' are:

- equal if x' = (x < < < i) for some i
- disjoint if $x' \neq (x < < i)$ for any i

Multi-output version generates *t* polynomial equations in *n* terms for every query

$$n = 2\lambda, t = n - \lambda = \lambda$$

$$\downarrow \downarrow$$

Enough to find two queries where x and x' are rotations of each other to solve system

me i ny i

Ideas for further study

- Idea 1: Express each output element using multiple polynomials over \mathbb{F}_2
 - are we sure no such expression can consist of multiple low-degree polynomials?
- Idea 2: Investigate conjecture that $f(x) \cdot wPRF(x) = g(x)$ must have high-degree f, g
- Idea 3: Pursue (\mathbb{F}_2 , +) \cong (\mathbb{F}_3 , ×) observation
 - how many queries must be made before we can expect to find x and x' that are rotations of each other?

