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Outline

* weak pseudo-random functions (WPRF)

» Constructions mixing linear functions over [, and |
* Polynomial representation of mappings
* Impossibility result: is it sufficient?

* |deas for further study



weak pseudorandom function (WPRF)

A mapping F: A X & —> Y where

A is the key space, 4 is the input space and % is the output space

(xp, Fr(xp)) (X1, 8(x1))
Property:

(x5, Fi(x,)) (X5, 8(X5))
For fixed k € #, can not distinguish | from

(X5 Fr(X,)) (X (X))

where g : & —> %/ is a random function,

the x; are drawn uniformly at random from &', and s < 2



wPRFs from mixing [, and [



Main idea

Build wPRF by combining linear mappings over [, and |

I
L

* Simple design
* Very efficient for use in MPC (few communication rounds)

* (Gives high algebraic degree when expressed over a single field

Generalization: mappings over [Fp and I]:q

Notation: elements and computations are red in [, and blue in I



TCC 2018, eprint 2018/1281

DarkMatter (2018)

BIP+18 presents idea and first construction (single output)

T =FLH =F™ ¥=F
Special matrices

k is circulant matrix, given by top row

k is Toeplitz matrix,

Q
1
x-
3><

=[11---1]| ¢ |«
y=l I given by top row and leftmost column

suggested (optimistic) parameters for A-bit security: n = m = 24



DarkMatter alternative constructions

basic LPN variant multi output variant
i . n - mxn — [
LT=FF=F,%=F, X =Fx=F Y =TF,
X. | X k. 9 k.
I — l l l Wy W, "
S be X,
w=x.k + Xk + ... +xk, =y, Wa| W2 5
mod 2 . - B « = k xn
W —= W . : :
Yt | |
Wm Wm

y =X1k1 +ka2+ -I-Xnkn-l-w

. wheret <m— A
«LPN with error rate 1/3»




multi output LPN variant 2" =, % = )", % = I,

Win T Up, \

(agressive) parameters: n = m = 24, t = A/log,(3)

)1 wy + Uy :
)/.2 B W2+l/l2 / E

mod 2

DGH+21 construction c7Y"7° 202! eprint 2021/885




APRR24 COnStru Ctl on CRYPTO 2024, eprint 2024/582
L=F,%=F ¥=F

Wi Wi X+ k
Y1 X~ Kk
w, W, 0 " Ky
Y, q :
= —|:|= A .
Vs
Wm Wm

1-to-1 parameters: n = 24, m = 7.064, t = 24/10g,(3)

many-to-1 parameters: n = 44, m = 24, t = A/1og,(3)



Cryptanalysis so far

. CCKKoQ PKC 2020, eprint 2020/783

» Attacks basic wPRF of BIP+18 with circulant matrix and basic LPN version
* EXxploits biases in the modular reductions
 Parameters in original constructions must be increased
. NR24 e€print 2024/2055
e Attacks 1-to-1 parameter set of APRR24 construction
» Exploits collisions in output (mapping is not 1-to-1)

« WPRF gives only A/2-bit security



Polynomial representations



On polynomial representation

BIP+18 argues the mixed moduli wPRFs do not admit representation by low-
degree polynomials over a fixed field

CCKK20 does not consider polynomial representations

DGH+21 refers to BIP+18, and does not consider polynomial representation
further

APRR24 shows polynomial representation over [-; that is surprisingly
compact, but does not investigate further



BIP+18 argument

Smo87

MOD, ) - outputs one iff the number of ones in the io-

put is congruent to s mod p. MOD,= NOT(MODy, ,).

Theorem 2: Let p be a prime number and r is not a power

of p then computing MOD, by depth k circuit with basic operations

1

AND, OR, NOT and MOD, requires ezp(Q(n 2*)) AND and OR

gates.

4.2 Inapproximability by Low-Degree Polynomials

Another necessary condition for a PRF family is that the family should be hard to approximate
by low-degree polynomials. Specifically, assume there exists a degree-d multivariate polynomial

19

f over GF(2) such that Fix(x) = f(x) for all z € {0,1}". Then, given (sufficiently many) PRF
evaluations (z;, Fx(x;)) on uniformly random values x;, an adversary can set up a linear system
where the unknowns corresponds to the coeflicients of f. Since f has degree d, the resulting system
has N = Zi:o (%) variables. Thus, given O(2% - N) random samples, the adversary can solve the
linear system and recover the coefficients of f (and therefore, a complete description of Fz). We
note that this attack still applies even if Fj is 1/0(2% - N)-close to a degree d polynomial. In this
case, the solution to the system will be 1/0(2¢- N)-close to Fi, with constant probability (which still
suffices to break pseudorandomness). Thus, for a candidate PRF family to be secure, the family
should not admit a low-degree polynomial approximation.

In our setting, we are able to rule out low-degree polynomial approximations by appealing to
the classic Razborov-Smolensky lower bounds for ACCY [Raz87, Smo87|, which essentially says that
for distinct primes p and g, MOD,, gates cannot be computed in ACCY[¢¢] for any £ > 1. Translated
to our setting, this essentially says that our “modulus-switching” mapping map,: {0,1}" — Zy,

which implements the mapping = Zie[n] z; (mod p), is hard to approximate over GF(¢%) as long
as p # q. We formalize this in the following lemma.

Lemma 4.2 (Inapproximability by Low-Degree Polynomials). For n > 0 and d < n/2, let
B(n,d) = zln : Z;”:/g_d_l (72”) Then, for all primes p # q, the function map,: {0,1}" — Z; on
n-bit inputs that maps © — >,y @i (mod p) is B(n,d)-far from all degree-d polynomials over
GF(q") for all £ > 1.



BIP+18 conjecture

4.3 Inapproximability by Low-Degree Rational Functions

The low-degree polynomial approximation attack described in Section 4.2 generalizes to the setting
where the PRF Fj; can be approximated (sufficiently well) by a low-degree rational function. For
instance, suppose there exist multivariate polynomials f,g over GF(2) of degree at most d such
that f(x) = Fr(x)-g(x) for all z € {0,1}™. Then, a similar attack can be mounted, as any random

Conjecture 4.3 (Inapproximability by Rational Functions). For any distinct primes p # q,
any integer ¢ > 1, and any d = o(n), there exists a constant & < 1 such that the function

map,: {0,1}" — Zjp that maps = +— ) ;) i (mod p) is 1/(2¢ - N)%*far from all degree-d rational
functions over GF(q").

We believe that studying this conjecture is a natural and well-motivated complexity problem.
Proving or disproving this conjecture would lead to a better understanding of ACCP.

Motivates further study on polynomial approximations
of mod2/mod3-constructions



APRR24 observation

BIP+18 only considers approximating MOD,, on inputs from {0,1 }"

no low-degree wiliilw| [k ek k,
| Al ” v Ky ky o ko k, gl [ %1
polynomia o 2| H{ W2 .
: d 2
. . y=[11-1]] & [+ & = 5
approximation = 5
; Lo X,

over [‘q for q 75 3 W, W, ky ky -k, Kk

Polynomial approximation over [-?



APRR24 observation

(F), +) =~ (¥, X)
x > x+1

n
=

Linear variable change k. + | = k.

n
xiky +xky + ...+ xk, I I l_cfl
=1



APRR24 observation

wy — 1 Wl:gl_‘?

Wl Wl kl k2 e kn—l kn W2 - 1 1=
k k- k_ k_i|X y YT
W W n n n . Wy = kil_
2 » 2 Xy 2 y=[111] . = g :

y=[11---1]] : |« . : m—

An W”_l w, = : k"
w, wl |kks = Kk Kk ! g +

Basic wPRF can be described by polynomial over [
of degree = n/2, but only m terms

would correspond to interpolating sparse multilinear polynomials. While the connection between symmetric-key

primitives (based on the alternating-moduli paradigm) and the hardness of interpolating sparse multilinear polynomials
has already been observed by [BIP' 18], neither of [BIP™ 18] or [DGH™21] considered the dual problem of solving a

system of sparse multilinear polynomial equations for their constructions.



Further observations

The set of terms {wy, ..., w, } for x
and{wj, ..., w, | for x"are:

e equal if X' = (x < < < 1) for some i
e disjointifx'# (x < < <i)foranyi

Multi-output version generates ¢ polynomial
equations in n terms for every query

n=2At=n—4A=141
\

Enough to find two queries where x and x’
are rotations of each other to solve system

y=[11---1]

w; — 1

w, — 1




Ideas for further study

o |dea 1: Express each output element using multiple polynomials over

* are we sure no such expression can consist of multiple low-degree polynomials?

» |dea 2: Investigate conjecture that f(x) - WPRF(x) = g(x) must have high-
degree f, g

e |dea 3: Pursue O observation

« how many queries must be made before we can expect to find x and x’ that
are rotations of each other?



