A New Design Approach in Symmetric Cryptography

Arnab Roy University of Innsbruck

ALPSY 2025, Obergurgl

Moving away from functional box

- Our motivation: Algebraic (Arithmetization Oriented) design requires polynomial based design approach
- Understand and study the polynomial instantiations in a compact way

- Towards polynomial based construction
 - How to define a (suitable) polynomial system?
 - How to characterise the polynomials defining such a system?
 - How to instantiate?

How do we construct block ciphers?

SPN Network

• Let $f: \mathbb{F}_q \mapsto \mathbb{F}_q$ be permutation polynomial

$$\mathcal{S}: \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \mapsto \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix}$$

- Let $A_{n \times n} \in GL_n(\mathbb{F}_q)$ i.e. an invertible matrix over \mathbb{F}_q
- Iterate: $\mathcal{S} \circ A \circ \mathcal{S} \circ \cdots \circ \mathcal{S}$
- HereIgnoring here the key and constant addition (can be included in linear transformation with slight modification)

How do we construct block ciphers?

Fesitel Network

- Let $p: \mathbb{F}_q^n \mapsto \mathbb{F}_q^n$ for $n \ge 1$ be a polynomial (may or may not be permutation)
- Balanced Feistel e.g. n=2
 - Let $F: \mathbb{F}_q^2 \mapsto \mathbb{F}_q^2$ be such that

$$F: \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ x_2 + p(x_1) \end{bmatrix}$$

- Let $A: [x_1 \quad x_2] \mapsto [x_{\sigma(1)} \quad x_{\sigma(2)}]$ where $\sigma \in S_2$ and $\sigma \neq \mathrm{id}$
- Iterate: $S \circ A \circ S \circ \cdots \circ S$
- Similarly we can define other Feistel Networks (balanced and unbalanced)

Why?

- Any function over \mathbb{F}_q can be represented with a polynomial
 - Current approach do not characterise polynomials but study a function w.r.t (known) cryptanalytic properties e.g. differential and linear properties
- Start with polynomial-based approach
 - Efficient polynomial evaluation: Low multiplicative complexity (in AO primitives, SCA resilient design)
 - Polynomial with necessary (cryptanalytic) properties
 - Properties of iterating polynomial system
- · Aim for an algebraically structured way

Polynomial based approach

- A topic in Mathematics: polynomial dynamical system (over finite fields)
- Iterative polynomial system (over finite field)
- Example of studied properties
 - Randomness (using discrepancy notion)
 - Period (with specific polynomial e.g. $f(x) = x^3 + c$)
 - Degree growth
 - •
- Provides a good starting point

Triangular Dynamical System

Introduced by Ostafe and Shparlinski (2010)

$$f_1(x_1, ..., x_n) = x_1 \cdot g_1(x_2, ..., x_n) + h_1(x_2, ..., x_n)$$

$$f_2(x_1, ..., x_n) = x_2 \cdot g_1(x_3, ..., x_n) + h_1(x_3, ..., x_n)$$

$$\vdots \vdots \vdots \vdots$$

$$f_{n-1}(x_1, ..., x_n) = x_{n-1} \cdot g_{n-1}(x_n) + h_{n-1}(x_n)$$

$$f_n(x_1, ..., x_n) = x_n$$

- $g_i, f_i \in \mathbb{F}_q[x_1, ..., x_n]$ for finite $n \in \mathbb{N}$
- The TDS is defined by $\mathscr{F}=\{f_1,...,f_n\}\subset \mathbb{F}_q[x_1,...,x_n]$

Triangular dynamical system

- Shows polynomial degree growth under iteration
- ullet PRNG with ${\mathscr F}$ was investigated using the discrepancy notion
- Polynomial degree growth

 — low discrepancy
- A hash function based on TDS was proposed

Generalised triangular dynamical system

A generalisation of TDS [Joint work with Matthias Steiner, SAC'24]

$$f_1(x_1, ..., x_n) = p(x_1) \cdot g_1(x_2, ..., x_n) + h_1(x_2, ..., x_n)$$

$$f_2(x_1, ..., x_n) = p(x_2) \cdot g_1(x_3, ..., x_n) + h_1(x_3, ..., x_n)$$

$$\vdots \vdots \vdots \vdots$$

$$f_{n-1}(x_1, ..., x_n) = p(x_{n-1}) \cdot g_{n-1}(x_n) + h_{n-1}(x_n)$$

$$f_n(x_1, ..., x_n) = p(x_n)$$

- Aim: define a permutation with ${\mathcal F}$
- $p_i \in \mathbb{F}_q[x_i]$ are permutations; $g_i, h_i \in \mathbb{F}_q[x_{i+1}, ..., x_n]$ are such that g_i have no zeros
- The GTDS is defined by $\mathscr{F} \subset \mathbb{F}_q[x_1,\ldots,x_n]$

Invertibility: polynomial characterisation

- For given $\beta = (\beta_1, ..., \beta_n) \in \mathbb{F}_q^n$
- Consider f_i for i = n, ..., 1
 - $p_n(x_n) = \beta_n \implies x_n = p_n^{-1}(\beta_n)$

•
$$p_{n-1}(x_{n-1})g_{n-1}(x_n) + h_{n-1}(x_n) = \beta_{n-1} \implies p_{n-1}(x_{n-1}) = \frac{\beta_{n-1} - h_{n-1}(x_n)}{g_{n-1}(x_n)}$$

- And so on
- Finding $g_i \in \mathbb{F}_q(x_{i+1}, ..., x_n)$ with no zeros is non-trivial in general
- When q is prime a trivial instantiation is: $g(x) = x^2 + a \cdot x + b$ s.t. $b^2 4a$ is non-square modulo q
- More general g_i can be build in from g

GTDS instantiations

SPN and partial SPN

•
$$g_i = 1, h_i = 0, \forall i$$

Generalised Feistel

- $p_i(x_i) = x_i, g_i = 1$
- Example
 - Feistel with contracting RF
 - Feistel with expanding RF
 - •

Balanced Feistel

• Can be composition of more than one \mathcal{F} (with same GTDS structure but different instantiations)

Recall GTDS

$$f_1(x_1, ..., x_n) = p(x_1) \cdot g_1(x_2, ..., x_n) + h_1(x_2, ..., x_n)$$

$$f_2(x_1, ..., x_n) = p(x_2) \cdot g_1(x_3, ..., x_n) + h_1(x_3, ..., x_n)$$

$$\vdots \vdots \vdots$$

$$f_{n-1}(x_1, ..., x_n) = p(x_{n-1}) \cdot g_{n-1}(x_n) + h_{n-1}(x_n)$$

$$f_n(x_1, ..., x_n) = p(x_n)$$

Other instantiations

• GTDS gives Horst scheme [GHRSWW '22, '23]

- Independent work from us at the same time
- Horst variations: Griffin and Reinforced Concrete
 - A mapping $\mathbb{F}_p^3 \mapsto \mathbb{F}_p^3$ defined as

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} x_1^d \\ x_2 \cdot x_1^2 + a_1 \cdot x_1 + b_1 \\ x_2^2 + a_2 \cdot x_2 + b_2 \end{bmatrix}$$

• p, a_i, b_i, d are integers such that p is prime, gcd(d, p - 1) = 1 and $b_i^2 - 4a_i$ is a non-square modulo p

GTDS: Motivation and consequence

Disclaimer: it was neither the intention nor the motivation to define arbitrary SK primitive with polynomials (and linear transformations)

Motivation

- Systematically investigate efficient AO primitive constructions
- Example criteria: Efficient polynomial evaluation (e.g. w.r.t bilinear gates)
- A polynomial based design approach

Consequence

- New constructions beyond Feistel, SPN and Lai-Massey, can be derived using GTDS
- A compact way to study a large set of cryptographic permutations and hash function
- Cryptanalytic properties in connection with polynomials (more work needed)

New construction from GTDS

Arion (keyed) permutation

- First design utilising GTDS at round level [Joint work with Matthias Steiner and Stefano Trevisani]
- Arion GTDS is defined as

$$f_i(x_1, ..., x_n) = x_i^{d_1} \cdot g_i(\sigma_{i+1,n}) + h(\sigma_{i+1,n}) \quad 1 \le i \le n-1$$

$$f_n(x_1, ..., x_n) = x^e$$

Here
$$\sigma_{i+1,n} = \sum_{j=i+1}^{n} f_j(x_1, ..., x_n) + x_j$$

- $g_i, h_i \in \mathbb{F}_q[x_{i+1}, ..., x_n]$ are degree 2 polynomials such that g_i have no zeros
- q is prime, $1 < d_1, d_2 < q 1$ be integers such that $gcd(d_i, q 1) = 1$ and $e \cdot d_2 = 1 \pmod{q}$

Conclusion

- Open problems
 - Utilising GTDS beyond AO primitives, e.g. over small field
 - More generic cryptanalysis of GTDS and tighten cryptanalytic bound
 - Non-trivial degree growth bound
 - Utilising for HW friendly instantiation
 - Extending GTDS for non-invertible systems

THANK YOU!

Questions?