Motivation 00000000000 Other results 0000 Rojas-León applied to Flystel 000000000 Conclusions 00

From Algebraic Geometry to Linear Cryptanalysis Application to Anemoi

Clémence Bouvier

Université de Lorraine, CNRS, Inria, LORIA

(joint work with Tim Beyne)

ALPSY Workshop, Obergurgl, Austria January 26th, 2025

Clémence Bouvier

Conclusions 00

New symmetric primitives



From Algebraic Geometry to Linear Cryptanalysis: Application to Anemoi

Clémence Bouvier

A new context

Traditional case

Alphabet

Operations based on logical gates or CPU instructions.

 \mathbb{F}_2^n , with $n \simeq 4, 8$

Arithmetization-Oriented

Alphabet

Operations based on large finite-field arithmetic.

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 32$

Conclusions 00

A new context

Traditional case

Alphabet

Operations based on logical gates or CPU instructions.

 \mathbb{F}_2^n , with $n \simeq 4, 8$

Cryptanalysis

Decades of cryptanalysis

- ★ algebraic attacks 🗸
- \star differential attacks \checkmark
- ∗ linear attacks 🗸
- * ...

Arithmetization-Oriented

Alphabet

Operations based on large finite-field arithmetic.

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 32$

Cryptanalysis

- \leq 8 years of cryptanalysis
 - \star algebraic attacks 🗸
 - \star differential attacks 🗡
 - \star linear attacks 🗡
 - * ...

Motivation 0000000000 Rojas-León applied to Flystel

Linearity

Definition

Let $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ be a function and ω a primitive character. The Walsh transform for the character ω of the linear approximation (u, v) of F is given by

$$\mathcal{W}_{u,v}^{\mathsf{F}} = \sum_{x \in \mathbb{F}_q^n} \omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)}$$

$$\mathcal{W}^{\mathsf{F}}_{u,v} = q^n \cdot C^{\mathsf{F}}_{u,v}$$

Motivation 0000000000 Rojas-León applied to Flystel

Linearity

Definition

Let $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ be a function and ω a primitive character. The Walsh transform for the character ω of the linear approximation (u, v) of F is given by

$$\mathcal{W}_{u,v}^{\mathsf{F}} = \sum_{x \in \mathbb{F}_{q}^{n}} \omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)}$$

$$\mathcal{W}^{\mathsf{F}}_{u,v} = q^n \cdot C^{\mathsf{F}}_{u,v}$$

Definition

The Linearity \mathcal{L}_{F} of $\mathsf{F}: \mathbb{F}_{q}^{n} \to \mathbb{F}_{q}^{m}$ is the highest Walsh coefficient.

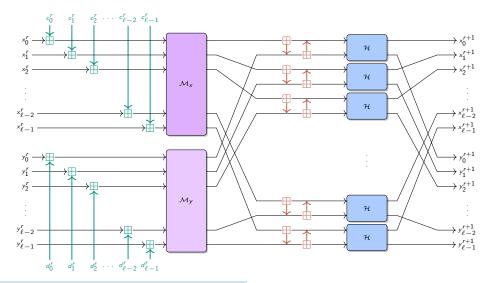
$$\mathcal{L}_{\mathsf{F}} = \max_{u,v
eq 0} \left| \mathcal{W}_{u,v}^{\mathsf{F}}
ight| \; .$$

From Algebraic Geometry to Linear Cryptanalysis: Application to Anemoi

Clémence Bouvier

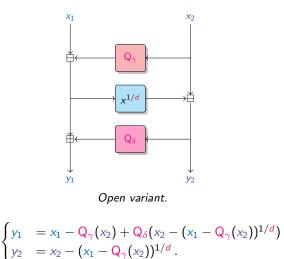
Anemoi round function

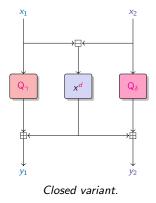
Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].



Flystel - Definition

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

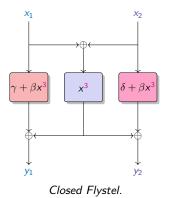




$$\begin{cases} y_1 = (x_1 - x_2)^d + Q_{\gamma}(x_1) \\ y_2 = (x_1 - x_2)^d + Q_{\delta}(x_2). \end{cases}$$

Closed Flystel in \mathbb{F}_{2^n}

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].



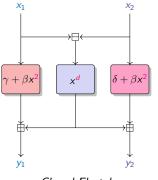
 $\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_{2^n}} (-1)^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right|$

Bound Linearity bound for the Flystel: $\mathcal{L}_{\mathsf{F}} < 2^{n+1}$

Conclusions 00

Closed Flystel in \mathbb{F}_p

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].



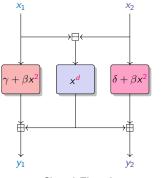
Closed Flystel.

d is a small integer s.t. $x \mapsto x^d$ is a permutation of \mathbb{F}_p (usually d = 3, 5).

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v\neq 0} \left| \sum_{x \in \mathbb{F}_p^2} e^{\left(\frac{2i\pi}{p}\right)(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right|$$

Closed Flystel in \mathbb{F}_p

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].



Closed Flystel.

 $\begin{array}{l} d \text{ is a small integer s.t.} \\ x \mapsto x^d \text{ is a permutation of } \mathbb{F}_p \\ \text{(usually } d = 3, 5\text{)}. \end{array}$

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_{p}^{2}} e^{\left(\frac{2i\pi}{p}\right)(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right|$$

How to determine an accurate bound for the linearity of the Closed Flystel in \mathbb{F}_{p} ?

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with deg(f) = d. Then

 $\mathcal{L}_f \leq (d-1)\sqrt{p}$

Motivation 000000000000 Rojas-León applied to Flystel 000000000

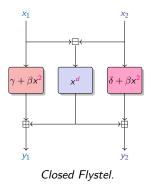
Conclusions 00

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with deg(f) = d. Then

 $\mathcal{L}_f \leq (d-1)\sqrt{p}$



$$\mathcal{L}_{\mathsf{F}} \leq (d-1) p \sqrt{p} \; ? \qquad egin{cases} \mathcal{L}_{\gamma+eta x^2} & \leq \sqrt{p} \; , \ \mathcal{L}_{x^d} & \leq (d-1) \sqrt{p} \; , \ \mathcal{L}_{\delta+eta x^2} & \leq \sqrt{p} \; . \end{cases}$$

1 .

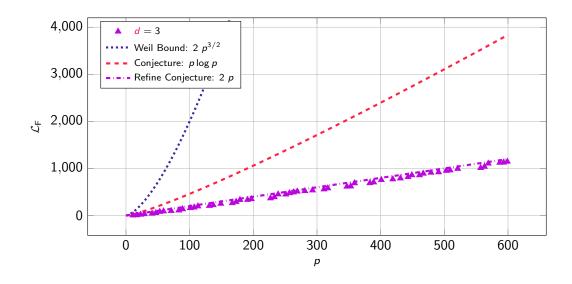
Conjecture $\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} e^{\left(\frac{2i\pi}{p}\right)(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right| \le p \log p$

Clémence Bouvier

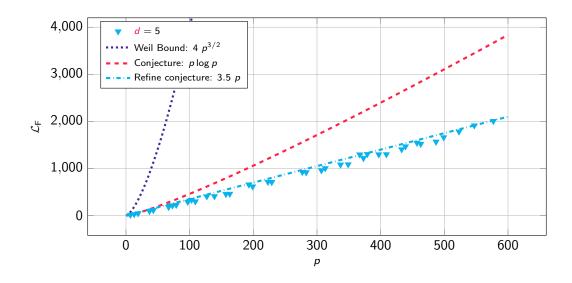
Experimental results



Experimental results (d = 3)



Experimental results (d = 5)



Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

This Talk:

* Applications of results for exponential sums (generalization of Weil bound)

$$\mathcal{W}_{u,v}^{\mathsf{F}} = \sum_{\mathsf{x} \in \mathbb{F}_q^n} \omega^{(\langle v, \mathsf{F}(\mathsf{x}) \rangle - \langle u, \mathsf{x} \rangle)} \quad \rightarrow \quad S(f) = \sum_{\mathsf{x} \in \mathbb{F}_q^n} \omega^{f(\mathsf{x})}$$

★ \mathbb{F}_q is a finite field s.t. q is a power of a prime p.

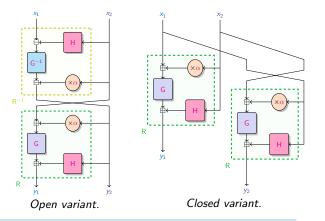
★ Functions with 2 variables $F \in \mathbb{F}_q[x_1, x_2]$.

Generalizations of Weil bound

- ★ Deligne bound
 - \star Application to the Generalized Butterfly construction
- ***** Denef and Loeser bound
 - \star Application to 3-round Feistel construction
- * Rojas-León bound
 - \star Application to the Generalized Flystel construction

Generalized Butterfly

Originally introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, $\mathbb{F}_{2^n}^2$, *n* odd. BUTTERFLY[G, H, α], with G : $\mathbb{F}_q \to \mathbb{F}_q$ a permutation, H : $\mathbb{F}_q \to \mathbb{F}_q$ a function and $\alpha \in \mathbb{F}_q$.



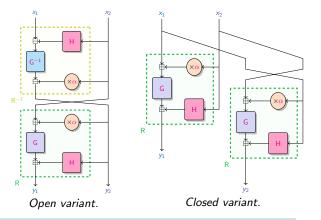
From Algebraic Geometry to Linear Cryptanalysis: Application to Anemoi

Clémence Bouvier

Generalized Butterfly

Originally introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, $\mathbb{F}_{2^n}^2$, *n* odd. BUTTERFLY[G, H, α], with G : $\mathbb{F}_q \to \mathbb{F}_q$ a permutation, H : $\mathbb{F}_q \to \mathbb{F}_q$ a function and $\alpha \in \mathbb{F}_q$.

 $f(x_1, x_2) = \langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle = v_1 \mathsf{G}(x_1 + \alpha x_2) + v_2 \mathsf{G}(x_2 + \alpha x_1) + v_1 \mathsf{H}(x_2) + v_2 \mathsf{H}(x_1) - u_1 x_1 - u_2 x_2 \ .$



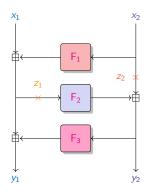
Deligne Bound

The	hy	persu	rface	de	fined	by	f _d	=	0
(the	degree- <i>d</i>			homogeneous				com-	
pone	nt	of	f)	is	smo	oth	SO	tł	nat
$\mathcal{L}_{F} \leq (\max\{\deg G, \deg H\} - 1)^2 \cdot q$									

3-round Feistel

Let $\text{FEISTEL}[F_1, F_2, F_3]$ be a 3-round Feistel network with F_2 a permutation and $d_1 \ge d_3$ where

 $\textit{d}_1 = \deg(\mathsf{F}_1), \textit{d}_2 = \deg(\mathsf{F}_2), \text{ and } \textit{d}_3 = \deg(\mathsf{F}_3)$.



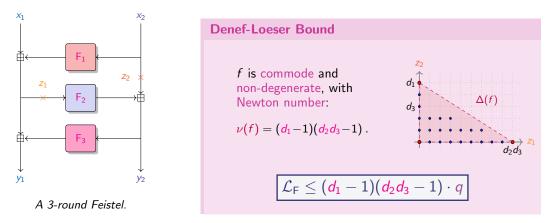
A 3-round Feistel.

Conclusions 00

3-round Feistel

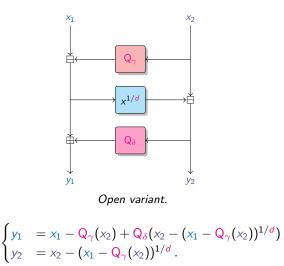
Let $\text{FEISTEL}[F_1, F_2, F_3]$ be a 3-round Feistel network with F_2 a permutation and $d_1 \ge d_3$ where $d_1 = \text{deg}(F_1), d_2 = \text{deg}(F_2)$, and $d_3 = \text{deg}(F_3)$.

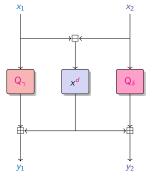
 $f(z_1, z_2) = \langle v, F(z) \rangle - \langle u, z \rangle = v_1 F_3(z_2 + F_2(z_1)) + v_2 F_2(z_1) + u_1 F_1(z_2) + (v_1 - u_1)z_1 + (v_2 - u_2)z_2 .$



Flystel - Definition

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].



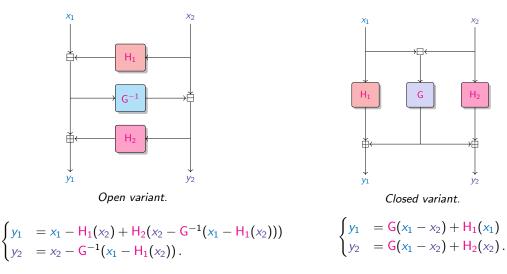


Closed variant.

$$\begin{cases} y_1 = (x_1 - x_2)^d + Q_{\gamma}(x_1) \\ y_2 = (x_1 - x_2)^d + Q_{\delta}(x_2). \end{cases}$$

Generalized Flystel - Definition

 $\mathsf{F} = \mathrm{FLYSTEL}[\mathsf{H}_1, \mathsf{G}, \mathsf{H}_2]$, with $\mathsf{G} : \mathbb{F}_q \to \mathbb{F}_q$ a permutation, and $\mathsf{H}_1, \mathsf{H}_2 : \mathbb{F}_q \to \mathbb{F}_q$ functions.



Isolated singularities

Definition

- * A singular point of a hypersurface is **isolated** if there exists a Zariski neighborhood of the point that contains no other singular points.
- * A polynomial g is quasi-homogeneous of degree δ is there exists w_1, \ldots, w_n s.t.

$$g(\lambda^{w_1}x_1,\ldots,\lambda^{w_n}x_n)=\lambda^{\delta}g(x_1,\ldots,x_n)$$
.

* The Milnor number of the singularity is equal to $\prod_{i=1}^{n} (\delta/w_i - 1)$

Isolated singularities

Definition

- * A singular point of a hypersurface is **isolated** if there exists a Zariski neighborhood of the point that contains no other singular points.
- * A polynomial g is quasi-homogeneous of degree δ is there exists w_1, \ldots, w_n s.t.

$$g(\lambda^{w_1}x_1,\ldots,\lambda^{w_n}x_n)=\lambda^{\delta}g(x_1,\ldots,x_n)$$
.

* The Milnor number of the singularity is equal to $\prod_{i=1}^{n} (\delta/w_i - 1)$

Example: Let $f(x) = (x-1)^d$.

- * x = 1 is the only singular point of f = 0.
- * Up to translation, we can consider the singularity in the origin: $g(x) = x^d$.

$$g(\lambda^w x) = (\lambda^w x)^d = \lambda^{w \cdot d} x^d = \lambda^{w \cdot d} g(x) \quad \text{so that } \delta = w \cdot d$$

* Milnor number of the singularity: $\delta/w - 1 = d - 1$.

Rojas-León Theorem

Theorem [Rojas-León, 2006]

Let
$$f \in \mathbb{F}_q[\mathbf{x}_1, \ldots, \mathbf{x}_n]$$
, s.t. deg $(f) = \mathbf{d}$.

Suppose that $f = f_d + f_{d'} + \cdots$, where f_d , $f_{d'}$, are resp. the degree-*d*, degree-*d'*, homogeneous component of *f*, with gcd(d, p) = gcd(d', p) = 1 and $d'/d > p/(p + (p - 1)^2)$.

If the following conditions are satisfied

* the hypersurface defined by $f_d = 0$ has at worst quasi-homogeneous isolated singularities of degrees prime to p with Milnor numbers μ_1, \ldots, μ_s ,

 \star the hypersurface defined by $f_{d'} = 0$ contains none of these singularities,

then we have

$$|S(f)| = \left|\sum_{x \in \mathbb{F}_q^n} \omega^{f(x)}\right| \leq \left((d-1)^n - (d-d') \sum_{i=1}^s \mu_i \right) \cdot q^{n/2} .$$

Rojas-León Theorem

Theorem [Rojas-León, 2006]

Let
$$f \in \mathbb{F}_q[\mathbf{x}_1, \ldots, \mathbf{x}_n]$$
, s.t. deg $(f) = \mathbf{d}$.

Suppose that $f = f_d + f_{d'} + \cdots$, where f_d , $f_{d'}$, are resp. the degree-*d*, degree-*d'*, homogeneous component of *f*, with gcd(d, p) = gcd(d', p) = 1 and $d'/d > p/(p + (p - 1)^2)$.

If the following conditions are satisfied

* the hypersurface defined by $f_d = 0$ has at worst quasi-homogeneous isolated singularities of degrees prime to p with Milnor numbers μ_1, \ldots, μ_s ,

 \star the hypersurface defined by $f_{d'} = 0$ contains none of these singularities,

then we have

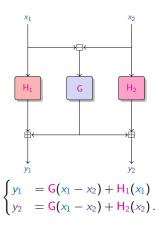
$$|S(f)| = \left|\sum_{x \in \mathbb{F}_q^n} \omega^{f(x)}\right| \leq \left((d-1)^n - (d-d') \sum_{i=1}^s \mu_i \right) \cdot q^{n/2} .$$

Linearity bound for
$$n = 2$$
: $\mathcal{L}_{\mathsf{F}} \leq ((d-1)^2 - (d-d')\sum_{i=1}^{s} \mu_i) \cdot q$.

Generalized Flystel - Bound

Let $F = FLYSTEL[H_1, G, H_2]$, with G a permutation, H_1, H_2 functions (deg $G > deg H_1, deg H_2$).

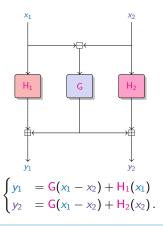
$$f(x_1, x_2) = \langle (v_1, v_2), \mathsf{F}(x_1, x_2) \rangle - \langle (u_1, u_2), (x_1, x_2) \rangle \\ = (v_1 + v_2) \mathsf{G}(x_1 - x_2) + v_1 \mathsf{H}_1(x_1) + v_2 \mathsf{H}_2(x_2) - u_1 x_1 - u_2 x_2 .$$



Generalized Flystel - Bound

 $\label{eq:left} \text{Let } F = \operatorname{FLYSTEL}[H_1,G,H_2] \text{, with } G \text{ a permutation, } H_1,H_2 \text{ functions } (\text{deg } G > \text{deg } H_1,\text{deg } H_2) \text{.}$

$$f(x_1, x_2) = \langle (v_1, v_2), \mathsf{F}(x_1, x_2) \rangle - \langle (u_1, u_2), (x_1, x_2) \rangle = (v_1 + v_2) \mathsf{G}(x_1 - x_2) + v_1 \mathsf{H}_1(x_1) + v_2 \mathsf{H}_2(x_2) - u_1 x_1 - u_2 x_2 .$$



Linearity Bound

* The hypersurface

$$f_d = (v_1 + v_2)(x_1 - x_2)^d = 0$$

contains one singular point [1:1] of quasi-homogeneous type with Milnor number d - 1.

★ The hypersurface

$$f_{d'} = v_i x_i^{\deg H_i} = 0$$

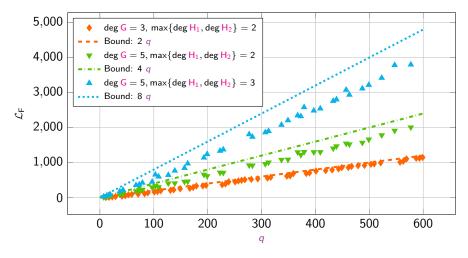
does not contain this point.

$$\mathcal{L}_{\mathsf{F}} \leq (\mathsf{deg}\, \mathsf{G}-1)(\mathsf{max}\{\mathsf{deg}\, \mathsf{H}_1,\mathsf{deg}\, \mathsf{H}_2\}-1)\cdot q$$

Conclusions 00

Generalized Flystel - Results

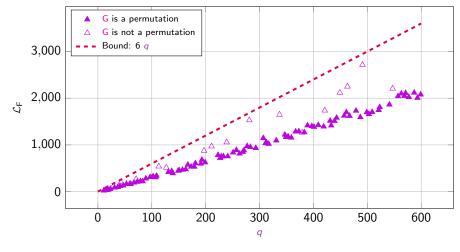
Let $F = FLYSTEL[H_1, G, H_2]$ with H_1 , G and H_2 monomials.



Low-degree permutations G, H_1 and H_2 .

Generalized Flystel - Results

Let $F = FLYSTEL[H_1, G, H_2]$ with H_1 , G and H_2 monomials.



$$\deg \mathsf{G} = \mathsf{7} \, and \deg \mathsf{H}_1 = \deg \mathsf{H}_2 = 2.$$

Conclusions 00

Solving conjecture

Conjecture

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then $\mathcal{L}_F .$

Solving conjecture

Conjecture

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then $\mathcal{L}_F \leq p \log p$.

Conjecture proved for $d \leq \log p$

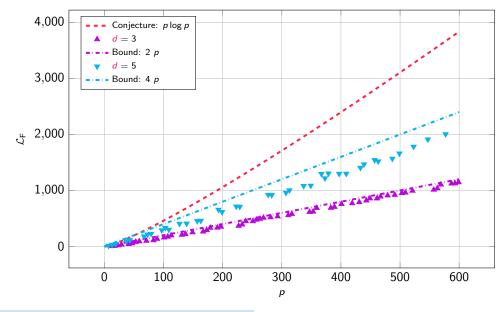
Proposition

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then

$$\mathcal{L}_\mathsf{F} \leq (\emph{d} - 1) p$$
 .

Rojas-León applied to Flystel 00000000●

Solving conjecture



Motivation 00000000000 Conclusions •O

Cohomological framework

$$S(f) = \sum_{\mathbf{x} \in \mathbb{F}_q^n} \omega^{f(\mathbf{x})} = \sum_{\mathbf{x} \in \mathbb{F}_q^n} \omega^{(\langle \mathbf{v}, \mathsf{F}(\mathbf{x}) \rangle - \langle u, \mathbf{x} \rangle)}$$

Cohomological framework

Sum of traces of the Frobenius automorphism on ℓ -adic cohomology groups.

Cohomological framework

Sum of traces of the Frobenius automorphism on ℓ -adic cohomology groups.

Sum of traces of a linear map on a vector space of finite dimension.

Cohomological framework

Sum of traces of the Frobenius automorphism on ℓ -adic cohomology groups.

Sum of traces of a linear map on a vector space of finite dimension.

$$S(f)| \leq \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

Clémence Bouvier

Conclusions

$\star\,$ Bounds on exponential sums have direct application to linear cryptanalysis

Conclusions

- \star Bounds on exponential sums have direct application to linear cryptanalysis
- * 3 different results...
 - * Deligne, 1974
 - $\star\,$ Denef and Loeser, 1991
 - * Rojas-León, 2006

Conclusions

- \star Bounds on exponential sums have direct application to linear cryptanalysis
- \star 3 different results... for 3 important constructions
 - * Deligne, 1974
 - $\star~$ Denef and Loeser, 1991
 - * Rojas-León, 2006

Generalization of the Butterfly construction 3-round Feistel network Generalization of the Flystel construction

 $\mathsf{F} \in \mathbb{F}_q[\mathbf{x_1}, \mathbf{x_2}], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_\mathsf{F} \leq C imes q$

Conclusions O

Conclusions

- * Bounds on exponential sums have direct application to linear cryptanalysis
- \star 3 different results... for 3 important constructions
 - * Deligne, 1974
 - $\star~$ Denef and Loeser, 1991
 - * Rojas-León, 2006

Generalization of the Butterfly construction 3-round Feistel network Generalization of the Flystel construction

 $\mathsf{F} \in \mathbb{F}_q[\mathbf{x}_1, \mathbf{x}_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_\mathsf{F} \leq \overline{C \times q}$

 \star Solving conjecture on the linearity of the Flystel construction in Anemoi

Conclusions

- * Bounds on exponential sums have direct application to linear cryptanalysis
- \star 3 different results... for 3 important constructions
 - * Deligne, 1974
 - $\star~$ Denef and Loeser, 1991
 - * Rojas-León, 2006

Generalization of the Butterfly construction 3-round Feistel network Generalization of the Flystel construction

$$\mathsf{F} \in \mathbb{F}_q[\mathbf{x}_1, \mathbf{x}_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_\mathsf{F} \leq C imes q$$

 \star Solving conjecture on the linearity of the Flystel construction in Anemoi

Contribute to the cryptanalysis efforts for AOP.

Conclusions O

Conclusions

- \star Bounds on exponential sums have direct application to linear cryptanalysis
- \star 3 different results... for 3 important constructions
 - * Deligne, 1974
 - $\star\,$ Denef and Loeser, 1991
 - * Rojas-León, 2006

Generalization of the Butterfly construction 3-round Feistel network Generalization of the Flystel construction

$$\mathsf{F} \in \mathbb{F}_q[x_1, x_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_\mathsf{F} \leq C imes q$$

 \star Solving conjecture on the linearity of the Flystel construction in Anemoi

Contribute to the cryptanalysis efforts for AOP.

